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Preface 
 
 
Automated extraction of topographic objects from remotely sensed data is an important topic 
of research in Photogrammetry, Remote Sensing, GIS, and Computer Vision. This joint 
conference of ISPRS working groups III/4 and III/5, held in Paris, France, discussed recent 
developments, the potential of various data sources, and future trends both with respect to 
sensors and processing techniques in automatic object extraction. The focus of the 
conference lay on methodological research. It was held in conjunction with ISPRS Laser-
scanning conference. 
 
The conference addressed researchers and practitioners from universities, research 
institutes, industry, government organizations, and private companies. The range of topics 
covered by the conference is reflected by the terms of reference of the cooperating ISPRS 
working groups: 
 

 Complex Scene Analysis and 3D Reconstruction (WG III/4) 
 Image Sequence Analysis (WG III/5) 

 
Prospective authors were invited to submit full papers of a maximum length of 6 pages. We 
received 60 full papers for review. The submitted papers were subject to a rigorous double 
blind peer review process of full papers. Altogether 38 papers were accepted based on the 
reviews. This corresponds to a rejection rate of 37%. Each paper was reviewed at least by 
two members of the program committee. The accepted papers and one invited paper were 
published as printed proceedings in the IAPRS series as well as on CD-ROM. Only a subset 
of these papers could be presented orally due to the single track design of CMRT09 and the 
generous time slots for intensive discussion. 
 
In total, we received contributions from authors coming from 20 countries. The proceedings 
include 39 papers from authors coming from 14 countries. There were 7 oral sessions with 
altogether 23 papers and one interactive session where 16 papers were presented as 
posters. 
 
Finally, the editors wish to thank all contributing authors and the members of the Program 
Committee. In addition, we like to express our thanks to the Local Organising Committee, 
without whom this event could not have taken place. Ludwig Hoegner did a great job with the 
management of the conference tool. The final word processing of all incoming manuscripts 
and the preparation of the proceedings by Wei Yao are gratefully acknowledged. Olivier 
Tournaire did a great job with the CD-ROM edition of the proceedings, and so did Clement 
Mallet and Adrien Chauve with the registration and the choice of the gala dinner. We would 
also like to thank Clement Mallet, Adrien Chauve, Frederic Bretar, Marc Pierrot-Deseilligny, 
Olivier Tournaire, Isabelle Grujard, François Boyero, Carol Godin, and Jessica Vencatasamy 
for the general day-to-day organisation of the event, and at last Nicolas Paparoditis for 
managing the Local Organising Committee.  
 
 
Munich, Hannover and Paris, July 2009 
 

   
Uwe  Franz  Nicolas  
Stilla Rottensteiner  Paparoditis 
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ABSTRACT:  

 

Last years witnessed the growth of demand for road monitoring systems based on image or video analysis. These systems usually 

consist of a survey vehicle equipped with photo and video cameras, laser scanners and other instruments. Sensors mounted on the 

van collect different types of data while the vehicle goes along the road. Recorded video can be geographically referenced with the 

help of global positioning systems. Road monitoring systems require special software for data processing. This paper addresses the 

problem of video analysis automation, and particularly the pavement monitoring functionality of such mobile laboratories. We show 

that computer vision methods applied to this problem help to reduce amount of manual labour during data analysis. Our method 

transforms video collected by mobile laboratory into rectified geo-referenced images of road pavement surface, and allows mapping 

of lane marking and road pavement defects with minimum user interaction. In our work the mapping workflow consists of two 

stages: off-line and online stage. In order to reduce user effort during error correction we take advantage of hierarchical image 

segmentation, which helps to delete false detections or mark missing objects with just a few clicks. Through continuous training of 

detection algorithm with the help of operator input error rate of automatic detection decreases; thus minimal input is required for 

accurate mapping. Experiments on real-world road data show effectiveness of our approach. 

 

 

1. INTRODUCTION 

Roadway monitoring systems are widely-used for supervising 

road pavement surface and repair planning. These systems 

usually include a complex of video cameras and other sensors 

mounted on a car as shown on Figure 1. The sensors record 

road pavement surface when travelling on a pavement at 

traffic speed. 

Most existing software for road monitoring involves manual 

processing of video collected by these mobile laboratories. 

Operator manually marks objects like lane marking and 

pavement surface defects (potholes, cracking and patches) on 

each video frame. This procedure is laborious and takes 

plenty of time; therefore the task of automation of objects 

detection comes into focus. In this paper we consider the 

problem of automation of video analysis for pavement 

surface monitoring. We describe a tool which assists in 

utilising visual observation data of pavement surface and 

mapping lane marking and pavement surface defects. 

Our main goal is to minimize effort of operator at the time of 

mapping lane marking and road defects while preserving 

accuracy of mapping result. The effectiveness of our method 

is achieved by intensive usage of computer vision techniques 

together with user-friendly interface that allows checking 

results of automatic detection and correcting errors if needed. 

As long as direct mapping of lane marking and road 

pavement defects in video sequences faces severe difficulties, 

we transform video into rectified images of road pavement 

surface. These images are further processed during interactive 

mapping. 

While to our knowledge there haven’t been much research on 

topic of road defects detection, lane detection is a well-

researched area of computer vision with applications in 

autonomous vehicles and driver support systems. Despite 

perceived simplicity of finding white markings on a dark 

road, it can be very difficult to determine lane markings on 

various types of road. These difficulties arise from shadows, 

changes in the road surfaces itself, and differing types of lane 

markings. A lane detection system must be able to pick out 

all manner of markings from cluttered roadways and filter 

them to produce a reliable estimate of the vehicle position 

and trajectory relative to the lane as well as the parameters of 

the lane itself such as its curvature and width. 

Existing methods for lane marking detection are usually 

based on edge detection (McDonald, 2001) and gradient 

analysis (Lu, 2007). Use of edges makes detection results 

sensitive to noise, changes in lighting conditions and 

shadows. Another approach uses steerable filters (McCall, 

2004) which can be convolved with the input image and 

provide features that allow them to be used to detect both 

dots and solid lines while providing robustness to cluttering 

and lighting changes. 

As long as these methods were designed for autonomous 

vehicles, they aim at tracking of lane marking in video. In our 

work the goal is to detect lane marking in still images of road 

surface. Also our task is to detect precise contours of lane 

marking instead of just determining lane marking direction. 

This task is closely related to the field of semantic image 

segmentation, therefore the method we propose for detection 

is based on semantic segmentation of rectified road images. 

Rectified images can differ substantially depending of 

roadway material, time of survey and weather conditions. 

Therefore automatic detection tuned on one road image can 

perform poorly on other images. For this reason we have 

developed a detection algorithm which is automatically tuned 

with the aid of user interaction in order to perform best on 

each particular road. This allows accounting for specific 

characteristics of every particular road, or even a road 

section. 

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯

1



 

 

The outline of mapping process for a user if the following: 

first automatic detection is applied to a small section of 

rectified road image, after that user checks the results of 

automatic method, corrects the errors if needed and then 

detection algorithm is adapted in order to take new data into 

account. After that user goes on to the following road section 

and the whole procedure is repeated again. Through 

continuous training of detection algorithm with the help of 

operator input error rate of automatic detection decreases; 

thus minimal input is required for accurate mapping. In order 

to reduce user effort during error correction we take 

advantage of hierarchical image segmentation, which helps to 

remove false detections or mark missing objects with just a 

few clicks. 

The paper is organized as follows. Section 2 addresses the 

procedure of data acquisition and transformation of video 

sequences into rectified road images. Section 3 describes 

offline stage of our method. Section 4 gives details on user 

interaction with the system. Our method for lane marking and 

pavement surface defects detection is described in section 5. 

Section 6 is devoted to our machine learning algorithm, 

which helps to tune detectors on various road images 

individually. Experiments on real-world data collected by our 

mobile laboratory are described in section 7. Section 8 is left 

for conclusion and future work. 

 

2. DATA ACQUISITION 

In this work we have used a vehicle equipped with 4 video 

cameras with resolution 720x576px and Global Positioning 

System (GPS) on board. The cameras capture video of road 

surface and roadside, which can be accurately geographically 

registered by means of GPS. Figure 2 (a) shows an example 

of one frame of video obtained by a video camera mounted 

on a van and corresponding section of rectified road image. 

Although all cameras in capture video, usage of video as 

input for mapping lane marking and road pavement defects 

has severe drawbacks. First, areal objects on road pavement 

surface suffer from projective distortion which degrades 

performance of detection algorithms. For example, 

rectangular pavement patches become trapezoids in video 

frame. Second, some elongated objects are not  fully visible  

in any single frame of video sequence. Third, different 

objects are represented with different spatial resolution on the 

same video frame depending on their distance to the camera. 

To overcome these problems we transform video sequence 

into rectified image of the road pavement surface. 

These images are obtained from video using perspective 

plane transformation. Resulting image is one long image in 

the full driven length. All rectified images are stored in raw 

format with time and distance information of all pixels. 

Figure 2 (b) shows an example of video frame obtained from 

one camera and a corresponding section of rectified image of 

road pavement surface. 

As long as image processing algorithms (like image 

segmentation) used at subsequent stages of our workflow are 

memory and time consuming, long rectified road image are 

cut into non-overlapping small sections. Each part is about 

0.5 megapixel image and represents an approximately 5-10 

meters long section of road pavement surface. All these 

section images are further processed in chain, following 

vehicle path. 

 

3. OFFLINE STAGE OF MAPPING PROCESS 

In our work the mapping workflow consists of two stages: 

off-line and online stage. As long as we aim at interactive 

working time at the time of road mapping, all time-

consuming operations required by both detection and 

learning are performed off-line. Offline stage happens once 

for each road data before user starts mapping road surface. 

This stage doesn’t require any user assistance. Our detection 

algorithm is based on over-segmentation and classification of 

super-pixels, therefore offline stage includes image 

processing, image segmentation, and calculation of features 

for each image segment. Below these operations are 

described in more details. 

 

Image processing 

 

 Roadway images are strongly differed to each other in color, 

brightness and texture. This fact substantially complicates the 

detection task. Therefore main goal of image preprocessing is 

to normalize images and put them into some standard state. 

Image processing includes luminance correction, contrast 

adjustment, colour correction and image smoothing. All these 

operations are performed in CIE-Lab colour space.  

For luminance correction we use a modification of Retinex 

algorithm(Land, 1971) . Single-Scale Retinex has artifacts 

such as halos around dark objects and shadows around light 

ones, what damages detection in low-contrast images. 

Conventional Multi-Scale Retinex also has these artifacts 

when it has to deal with strong luminance changes. Since 

most of necessary lightness correction is caused by ruts on 

the road, brightness map is calculated using elongated 

median filter. It helps to reduce halos effect during luminance 

corrections (Figure 4 (b)). 

    
(a) (b) Figure 1. Road laboratory. Video 

cameras are mounted on the front 

side and on the back side of the car. 
Figure 2. Video frame from one camera and a 

corresponding section of rectified road image.  

Figure 3. Lane marking and road defects 

are mapped with a minor user 

interaction. 
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After Retinex correction mean value of luminance becomes 

equal to one. Before scaling L-component back to normal, 

contrast adjustment is achieved by squaring it. Then, L-

channel is scaled back to normal (Figure 43(c)). This 

operation helps to make detection of road defects easier even 

in low-contrast images. 

Colour correction uses conventional grey world algorithm. In 

Lab colour space it consists of the shift of colour components 

so as to make mean value of these components be equal to 

zero, instead of scaling colour components in RGB space. In 

the final stage bilateral filtration is used to smooth image 

without loss of important details (Figure 4(d)). 

 

Image segmentation 

 

The hierarchical structures is a powerful tool to analyze data 

in many applications. Several basic approaches to 

construction of such multi-level image structure exist. The 

first approach involves recursive segmentation. An image is 

segmented in a large scale, and then segments are 

independently split into pieces. Another approach involves 

successive segmentation of an image at several scales. But in 

this case large segments not necessarily represent 

combinations of smaller ones; this fact limits the scope of 

application of this method for segmentation. 

In this work we used a method based on determination of 

strength of the boundaries between segments by means of the 

analysis of saddle points between density modes and merging 

segments that are weakly separated. For segmentation of the 

image in our work the hierarchical version of algorithm of 

mean shift, proposed in (Paris, 2007) is used. 

This algorithm provides fast hierarchical segmentation on the 

basis of idea of the saddle point analysis. Results of this 

hierarchical segmentation are shown in Figure 5, where 

borders of segments at different levels of hierarchy are shown 

in white. 

 

Features calculation 

 

A number of various features are used for classification of 

segments. We use colour statistics, such as mean values of 

CIE Lab components and mean values of RGB components, 

colour variance, Lab components’ percentiles.  

To account for shape information we calculate coordinate 

statistics, such as mass centre, coordinate variance, 

elongation, orientation, area of the segment. Usage of 

information about neighbourhood of the segment is also very 

informative for road defects detection. Accordingly distance 

between mean values of colour components inside segment 

and inside its neighbourhood are also included in the list of 

features. 

Texton histograms are also used in our system (Leung 1999). 

These features are proven to be highly effective in 

recognition task and are used nowadays in many detection 

and recognition systems (Criminisi, 2006). 

Previously created filter bank is applied to the image; filter 

output vectors for each pixel are associated with the nearest 

texton vectors from previously trained universal texton 

dictionary. Then histogram of textons over the segment is 

used as feature for classification task. Figure 4(e) illustrates a 

resulting texton map, which is an image, where pixels are 

labeled accordingly to corresponding textons. 

 

4. ONLINE STAGE OF MAPPING PROCESS 

At online stage automatic detection algorithm is applied to 

parts of rectified road image. User examines results of 

automatic detection on one image part and corrects detection 

errors if needed. Then automatic detection is adapted to new 

data. After that user goes on to the next part of the road and 

again analyses and corrects results of automatic detection. 

Accordingly automatic detector is continuously tuned in 

order to capture specifics of particular road. 

Our system provides various facilities for making process of 

error correction easier for the user. The GUI contains a 

control which lets user change segmentation level. Operator 

is able to mark ground truth in a less detailed level and then 

specify it in a more detailed one. It makes user work more 

efficient. 

Another facility allows controlling tradeoff between detection 

rate and false positive rate individually for lane marking and 

road defects. For example, user can increase detection rate of 

road defects detection (thus increasing false positive rate) by 

moving a slider. The change in detection rate is performed by 

changing a threshold on classifier output for road defects on 

the last cascade layer. This feature helps to significantly 

reduce amount of manual work in the beginning of online 

stage, when classifiers show instable performance. 

 

5. LANE MARKING AND PAVEMENT DEFECTS 

DETECTION ALGORITHM 

Our approach is based on cascade classifiers. The idea of 

cascades is derived from (Viola, 2002). General workflow of 

cascades is the following. There is ordered set of classifiers, 

where every subsequent classifier is more "complex" than the 

preceding one ("complexity" of the classifiers is defined 

depending on specifics of data or application). Input data 

  
(a) (b) (c) (d) (e) (a) (b) (с) (d) (e) 

Figure 4. Image processing stages: (a) Source image; (b) Retinex 

transformation result; (c) result of retinex and contrast adjustment 

stages; (d) overall image preprocessing result; (e) Texton map 

Figure 5.Cascade classification stages. (a) – Input image, (b) – 

ground truth image, (c) – 1st cascade layer result, (d) – 2nd 

cascade layer result, (e) – overall algorithm result. 
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array is passed through these classifiers in turn; each 

classifier eliminates the data that confidently does not belong 

to the target class, the remained data is passed to the 

following, more "complex" classifier, for more thorough 

examination, etc. 

The general idea of cascades involves detection of one target 

class that implies binary classification. In our task the 

cascade is applied to a problem of separating objects of two 

different classes from a background; that requires three-class 

classification. It is important to notice, that the background 

class in our task dominates significantly over classes of lane 

marking and pavement defects. This finding suggests 

modifying the scheme of cascades used in (Sudakov, 2008) in 

order to allow detection of several classes of objects. 

 

Cascade workflow 

 

At the offline stage the image had been segmented using the 

method from (Paris, 2007) into homogeneous regions, and 

several scales of segmentation are available. The largest scale 

segmentation is used on the first layer of cascade, the most 

detailed segmentation scale is used on the last layer. 

Segmentation at each subsequent scale is a subdivision of 

segmentation at the preceding scale, therefore we have a 

sequence of enclosed segments (hierarchy). Each cascade 

layer corresponds to a certain scale of hierarchy of 

segmentation and a binary classifier. 

Those segments that have not been rejected at the preceding 

layers of cascade are classified into two classes: objects of 

interest (including lane marking and road surface defects) and 

background. The goal of classification is to reject the 

segments that do not contain pixels of objects of interest. For 

this purpose the threshold on the classifier output is set up so 

that the detection rate is close to 100 %. 

This procedure is repeated up to the last cascade layer and 

then multi-class classification is applied. Segmentation 

corresponding to the last cascade layer is detailed enough to 

capture precise bounds of lane marking and pavement 

defects. Moreover, the majority of background segments are 

rejected at the preceding layers, so the number of background 

segments passed to the last layer approximately equals to the 

number of lane marking segments and segments of road 

covering defects. Therefore our cascade operational scheme 

also helps to solve a problem of imbalanced classes thus 

helping to achieve better classification performance. The 

workflow of cascaded segmentation is illustrated in Figure 5. 

 

6. ON-LINE LEARNING 

Online learning algorithms (Domingos, 2000, Oza,2005) 

process each training example once ‘on arrival’ without the 

need for storage and reprocessing, and maintain a current 

model that reflects all the training examples seen so far. Such 

algorithms have advantages over typical batch algorithms in 

situations where data arrive continuously. They are also 

useful with very large data sets on secondary storage, for 

which the multiple passes through the training set required by 

most batch algorithms are prohibitively expensive. 

In order to enable user-aided tuning of object detection we 

incorporated on-line learning algorithm in the core of the 

system. As long as we aim at interactive time of classification 

and learning, the following requirements for the online-

learning algorithm arise. First, online classifier should not 

store previously seen training examples. Second, learning 

time should not depend on the number of examples already 

seen by the learner. Thus we chose online random forest over 

Hoeffding trees (Domingos, 2000) as it meets both these 

requirements. Below we describe how online classifiers are 

used in our cascaded detection method.  

 

On-line learning of cascaded segmentation 

 

In section 3 we described the workflow of cascaded 

algorithm for object detection, supposing that all classifiers 

are already trained. Here we describe the training phase of 

cascaded detection method. 

The main problem here is what data should be used for 

training of classifier at each particular layer of cascade. There 

are two difficulties with providing training data to classifiers 

at cascade layers. First, we should take into account all 

segments which contain target class because if we do not 

provide enough samples of target class at the training stage, 

classifier wouldn’t be able to detect them at classification 

stage. This can lead to severe error of first kind. 

The second problem is lack of target samples at all cascade 

layers in comparison to number of background samples. This 

class imbalance can lead to additional increase of error of 

first kind. This means that cascade will miss large amount of 

target objects. Therefore we need to consider special 

techniques for balancing class distributions. Our solution for 

both these problems is the following. We train classifier 

corresponding to each cascade layer using the data passed to 

a corresponding cascade layer by preceding version of 

cascade which had not been adapted to last portion of data. 

Then, all segments which contain marking and defects are 

added to the training set on each layer. In order to better 

balance classes’ distribution we use cost-sensitive online 

random forest, described below. 

 

On-line random forest 

 

In this work we use ‘one vs all’ algorithm for multi-class 

classification on the last cascade layer. This enables using 

binary classifiers on the lowest tier of the system. Those 

classifiers should be able to learn even some first portions of 

a training set efficiently to give a reliable classification result. 

Also, as mentioned above, these classifiers should handle 

imbalanced classes’ data. 

We use on-line random forest classifiers at all stages of 

cascade. Our version of online random forest resembles an 

online bagging algorithm proposed by (Oza, 2005). We 

modified this algorithm in order to allow balancing the 

classes. This is achieved by assigning parameters of 

exponential distribution individually to each class in on-line 

bagging algorithm. 

This procedure akin to random resampling is equivalent to 

introducing different penalty costs for misclassification of 

objects of each class. In this work costs are calculated in 

inverse proportion to a number of samples in the class. Also 

we use a random set of features for every weak classifier like 

in Random Forest algorithm (Brieman, 2001). This, together 

with using Hoeffding trees (Domingos, 2000) as a weak 

learner, helps to achieve stable classification results and 

reduce training and classification time. 

 

7. - EXPERIMENTS 

Image base 

 

For the experiments we used four road images. They differ in 

quality and marking and relative areas of defects. We tested 

our system on the first 18 parts of every road image. All parts  
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are about 0.5 megapixel size and correspond to 5-10 meters 

of road surface. Some of image parts with results of our 

automatic detection are shown in Figure 8. 

 

Experiments setup 

 

We have developed a testing framework which emulates user 

activity at the on-line stage. Given the classification results 

and ground truth data it starts with automatic thresholds 

adjusting. Gradient descent algorithm is used to determine a 

set of thresholds that minimizes total area of misclassified 

objects. Then user interaction is emulated as follows. At first, 

our framework corrects all errors of automatic detection 

which can be amended by relabeling segments of the coarsest 

segmentation scale. Then testing framework emulates user-

aided error correction at subsequent segmentation scale. This 

procedure is repeated up to the most detailed segmentation 

scale. Total number of clicks required for errors correction is 

calculated as a sum of click counts at all segmentation scales. 

This statistic measures overall usability of our tool for road 

mapping. 

One can see total clicks count per image part measured on 4 

roads from our image base in Figure 6 (a, b). Road1 and 

road2 contain greater number of road defects than road3 and 

road4, therefore larger number of user clicks is required for 

mapping last two roads. We have compared number of clicks 

required to achieve accurate mapping when user corrects 

errors of our automatic detection algorithm with the number 

of clicks required for mapping road surface from scratch 

when no automatic detection is performed. One (?- или It can 

be seen) can see that usage of automatic detection algorithm 

leads to advance in usability of mapping tool. 

As a matter of fact, road marking can be usually found 

perfectly after processing the second or the third part image. 

So, the problem of road defects detection is more 

challenging. Figure 6 (c, d) demonstrates misclassified area 

of road defects subject to number of image parts seen by 

detection algorithm. 

Figure 7 illustrates false positive and false negative error 

rates of road defect by pixels on road1 data. This picture 

represents usual behaviour of our system. The rate of 

detected defects increases over time when more defects 

examples shown to automatic detection algorithm. 

In summary, overall error tends to decrease while the number 

of handled images grows. The system usually starts to 

distinguish road defects since two or three images have been 

handled. Some road images like road3 and road4 contain a 

small amount of road defects (some image parts do not 

contain them at all). Although learning process is slowed 

down and benefit of using interactive system is reduced on 

such kind of roads however, usage of automatic detection 

result still remains beneficial. 

 

8. CONCLUSIONS AND FUTURE WORK 

We have presented a tool for efficient interactive mapping of 

road defects and lane marking on rectified images of road 

pavement surface. Intensive use of computer vision methods 

on different stages of our data processing workflow increases 

usability of the tool. 

The most significant drawbacks of our tool is the limitation 

of using segments in user interaction stage and incapability to 

correct detection results on sub-segment level. Also our 

system currently is unable to accommodate to changes of the 

road structure, e.g. illumination level changing. This 

drawback can be eliminated if we provide on-line classifier 

with concept adapting.  

(a) (b) (с) (d) 

Figure 6. First pair of pictures: User clicks per screen required to obtain correct road mapping subject to number of image 

parts already seen by our learnable detection algorithm (a) - road1, road2 data (b) - road3 and road4 data. Solid squares 

show necessary number of clicks if our detection algorithm is applied before user input. Empty squares show necessary 

number of clicks without use of automatic detection algorithm. Y-axis shows estimated number of clicks and x-axis 

represents number of processed images. Second pair of pictures: Error of automatic detection algorithm subject to number of 

image parts already seen by learnable detection algorithm (c) - road1, road data (d) - road3 and road4 data. The error is 

measured as a fraction of image square misclassified by our detection algorithm. At all plots green lines correspond to road1 

and blue lines correspond to road2. Y-axis shows error rate and x-axis represents number of processed images. 

 
Figure 7. False positive and false negative rates on road1 

data subject to a number of handled road sections. Y-axis 

shows error rate and x-axis represents number of processed 

images. 
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Figure 8. Results of automatic detection of road defects and lane marking. From top to bottom:  road1 data, road2 data, road3 data, 

road4 data. Image parts number 3, 5, 10 and 18 are shown together with automatic detection results before manual correction. Lane 

marking is shown in green with blending, road defects are shown in brown with blending. Picture is better viewed in color and 

magnified. 
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ABSTRACT: 
 
Road systems are the fundamental component in the geographic information systems. This kind of civil infrastructures has large 
coverage and complex geometry. Thus, the modelling process leads to handling huge data volume and multi-source datasets. A 
reasonable process should be able to reconstruct separate parts of road networks and combine the surfaces together. Hence, the 
reconstruction of complete three-dimensional road networks needs scrutiny when a large area is to be processed. This paper proposes 
a scheme to focus on this issue using an integrated strategy with multi-source datasets. The modelling processes combine different 
data sources to refine road surfaces to keep the continuities in elevation and slope. The proposed scheme contains three parts: (1) data 
pre-processes, (2) planimetric networking, and (3) surface modelling. In the first part, datasets are registered in the same coordinate 
system. In the next step, topographic maps provide the roadsides to derive the geometric topology of road networks. Finally, those 
centerlines combine airborne laser scanning data to derive road surfaces. Considering the data variety, some road segments generated 
from aerial images are also included in the proposed scheme. Then, the successive process integrates those models for the refinement 
of road surfaces. The test area is located in Taipei city of Taiwan. The road systems contain local streets, arterial streets, expressways, 
and mass rapid transits. Some roadways are multi-layer and cross over with different heights. The final results use three-dimensional 
polylines and ribbons to represent geometric directions and road surfaces. Experimental results indicate that the proposed scheme 
may reach high fidelity. 
 
 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Based on the viewpoint of decision support for modern cities, 
the reconstruction of a virtual environment is an essential task. 
The applications include urban planning, traffic simulation, true 
orthorectification (Zhou et al., 2005), hazard simulation, 
communication, etc. Since the road models are one of the most 
prominent components in the urban information systems, the 
reconstruction of the model becomes increasingly important. In 
general, the traditional topographic map is a kind of widely used 
dataset that describes road geometries. It can efficiently build 
single-layer road models. However, this civil infrastructure is 
developed rapidly in modern cities for the traffic demand, and 
road types become more complex including local streets, 
arterial streets, expressways, freeways, and mass rapid transit. 
Single-layer road networks have changed to multi-layer systems 
and topomaps may be insufficient to describe complex roads. 
The elevation information of road surfaces needs to be 
considered for the separation of overpasses. 
 
Some researches focused on the surface modelling processes 
with different strategies and data, e.g. aerial photos, laser-
scanning data, GPS data, topomaps, and so on. Cannon (1992) 
proposed a scheme to locate the three-dimensional road profiles 
integrating GPS and INS data. A related work also had been 
made to estimate the slope information of road profiles using 
GPS data (Han and Rizos, 1999). Some studies preferred to 

derive road information in spectral domain. They analyzed road 
shapes of centerlines or boundaries to derive road geometries 
with vehicle-based images (Yan et cl., 2008), aerial photos 
(Treash and Amaratunga, 2000; Hinz and Baumgartner, 2003; 
Dal Poz et al., 2004), satellite images (Yan and Zhao, 2003; 
Doucette et al., 2004; Hu et al., 2004a; Kim et al., 2004; Karimi 
and Liu, 2004; Yang and Wang, 2007), airborne laser scanning 
data (Clode et al., 2007). Some proposed semi-automatic 
approaches basing on the matching technique to reliably extract 
road geometries with manual editing from high-resolution 
satellite imagery (Hu et al., 2004a; Kim et al.,2004). Easa et al. 
(2007) focused on the automatic image processing to extract 
edge lines for calculation of geometric parameters to describe 
horizontal alignments from high resolution images. 
 
On the other hand, an integrating strategy had been proposed to 
deal with this issue using aerial images and laser scanning data 
(Hu et al., 2004b; Zhu et al., 2004). Zhang (2003) integrated 
aerial photos and geo-database to derive and update three-
dimensional road data. Moreover, geo-database and laser 
scanning data also could be a combination. Hatger and Brenner 
(2003) calculated the profile geometries of centerlines from the 
geo-database and digital surface models. The segment-based 
method used region growing to detect road areas for the 
calculation of geometric parameters to refine the geo-database. 
Furthermore, Cai and Rasdorf (2008) also combined two 
datasets, airborne laser scanning data and planimetric centerline 
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data, to establish three-dimensional centerlines. Those elevation 
differences of multi-layer areas were marked with an additional 
attribute. 
 
Other researches based on the mapping concepts to regard road 
surfaces as some parts of terrain. Thus, some filtering 
techniques were developed to extract ground information from 
airborne laser scanning data for DEM (digital elevation model) 
generation. The performances of those filtering methods had 
been compared by Sithole and Vosselman (2004). In some cases, 
single-layer road network could be regarded as a part of bare 
earth. Hu (2003) assumed that road profiles could be piecewise 
continuous and extract road points with the elevation threshold 
from discrete point clouds. Vosselman (2003) used laser 
scanning data to reconstruct single-layer road models 
referencing cadastral maps. This process derived road points 
within road areas first and generated models with triangular 
irregular network (TIN) surface. The refinement step assumed 
that road surfaces without slope, curvature, or torsion and 
smoothed them with the second order constrained polynomial 
functions. Additionally, Sithole and Vosselman (2006) handled 
the multi-layer condition which point clouds of overpasses were 
marked with the analyses of slope and elevation difference. 
They regarded those marked areas as the extended parts of 
terrain so that there was at least one side should connect to the 
ground. Oude Elberink and Vosselman (2006) paid attention to 
multi-layer interchanges using laser scanning data and 
topographic maps. Those roads were TIN-based models, and the 
multi-layer parts were separated into different elevations. Chen 
and Lo (2009) proposed a scheme to fuse airborne laser 
scanning data and topographic maps. The planimetric geometry 
and elevation of each road segment were established. The road 
models were represented as vector-based ribbons. 
 
As a summary, the integration of heterogeneous datasets seems 
to be a popular way to reconstruct three-dimensional road 
models, especially topomaps and laser scanning data. Most 
studies focused on the modelling processes for single-layer road 
systems, and few of them discussed about multi-layer parts. The 
reconstruction of road systems using a robust method for the 
large coverage is still an ongoing topic. Although the proposed 
scheme (Chen and Lo, 2009) reconstructed multi-layer models, 
this sequential modelling process was a local approach to 
smooth the model surfaces. In a rigorous way, we may need to 
consider a method to handle complete road networks and 
preserve the capacity for model updating. 
 
This investigation proposes an approach to model three-
dimensional road networks using laser scanning data and 
topographic maps. Because some countries may have complete 
information of road boundaries and centerlines, others may use 
CAD data to describe roads using piecewise polylines in 
planimetric domain without geometric topology. Therefore, this 
investigation needs to compute topology of road networks and 
derive road elevations from discrete point clouds. In this 
planimetric part, each road segment would be generated its 
centerline and connect to others for network topology with 
conjunction points. The successive processes then include laser 
scanning data to derive road surfaces of each segment and refine 
all conjunction points to maintain the continuities in elevation 
and slope. When road systems encounter changes over time, 
new roads for example, they are needed to rebuild according to 
the latest dataset. Those new parts are digitized from aerial 
photos in this modelling process and refined their elevations 
with existed models to keep the system coincidence. The results 
are to be represented as three-dimensional ribbons. 
 

 
2. METHODOLOGY 

Based on the viewpoint of surface modelling, we integrate 
multi-source datasets to reconstruct complete surface modelling. 
In this investigation, we assume that the vertical and horizontal 
alignments of each road segment are continuous within a local 
area. Moreover, a global approach implements B-spline surface 
fitting refines the elevations of network conjunctions by keeping 
the continuities. The local approach sequentially modifies the 
elevation of each road segment. The proposed scheme has also 
considered the multi-layer condition. The processes have three 
parts: (1) registration, (2) planimetric networking, (3) model 
surfacing. The first part is to register all datasets, i.e. topomaps, 
laser scanning data, and three-dimensional boundaries. The next 
step then produces the networks using roadsides from 
topographic maps. The third part computes the model surface of 
each road segment and combines all roads from different 
sources to refine their vertical and horizontal profiles to keep 
the continuities in elevations and slope. The workflow shows in 
Figure 1. 
 

 
Figure 1.  Workflow 

 
2.1 Planimetric networking 

In traditional CAD-based topographic maps, there are several 
road levels like local streets, arterial streets, expressways, etc. 
This kind of data records those boundaries using piecewise 
polylines. In addition, the topomaps may lack some information, 
e.g. attributes, topology, and centerlines. To directly use the 
topomaps for centerline generation is still difficult if those 
boundaries are independent without pair relationship. Therefore, 
this step uses those existed boundaries to compute centerlines 
for the reconstruction of network topology. 
 
First of this part, the planimetric process separates those 
boundaries into many simple straight lines. Those pieces then 
connect to each other according to the empirical thresholds of 
distance and angle for the development of complete boundary 
lines. The second step pairs those produced edges to position 
centerlines. All the planar conjunctions, i.e. crossroads, are 
automatically added a node point to split those centerlines and 
establish the topology, besides overpasses. The networking 
procedure would detect those multi-layer parts with boundary 
analysis (Chen and Lo, 2009) and mark which centerlines go 
through those areas. 
2.2 Three-dimensional surfacing 

After planimetric networking, laser scanning data is employed 
for road surfacing. The airborne LIDAR data records plenty 
discrete points with accurate elevation information. This 
surfacing step, basing on the planimetric geometry, extracts 
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those points on the road surfaces and computes their elevations. 
Chen and Lo (2009) assumed that the local relief of road 
surfaces should be continuous for traffic. They then analyzed 
the elevation histogram and extract the candidate points on the 
roads to fit surfaces. The proposed scheme contains two parts: 
(1) initial modelling and (2) profile refinement. The initial 
process calculates the surface elevations from discrete points 
along each produced centerline. Those original road surfaces 
then are modified their elevations to keep the model continuities 
in elevation and slope. 
 
2.3 Initial Modelling 

Those existed airborne laser scanning data describe accurate 
elevations with considerable quantities of points. The laser 
beam also has the opportunity to penetrate canopies to detect 
elevations in occluded areas. However, this kind of data has no 
distinct boundaries. To directly use discrete points for surface 
modelling is a difficult work. Chen and Lo (2009) proposed a 
two-way method to extract road points. They assume that the 
road surface profile is smooth and continuous in a local area so 
that the maximum number of elevation histogram of road points 
may locate within a certain interval. One process, thus, extracts 
points with a designed threshold to fit surfaces at each vertex of 
centerlines. The used equations, i.e. linear and quadratic 
polynomial functions, are shown in Equation  (1) and (2). The 
unknown parameters are the s11~ s26. Those two hypotheses 
are automatic selected according to the analysis of the standard 
deviation during the fitting procedure. In some conditions, road 
surfaces may be interfered by cars or canopies, this threshold 
may lead to remove too many points to calculate surfaces. The 
other process then selects the locally lowest point to be the 
surface elevation. In the first way, the cross-section is a curve to 
represent the reality of horizontal profiles by surface fitting. On 
the other hand, the second way provides a flat road surfaces. 
 

( )1 11 12 13S Z s s X s Y= + +                                                               (1) 

( ) 2 2
2 21 22 23 24 25 26S Z s s X s Y s XY s X s Y= + + + + +                           (2) 

 
where X, Y,and Z are coordinates of the LIDAR points; and 
S11~S26 are parameters of the surface function. 
 
2.4 Profile refinement 

This investigation describes each road segment with two nodes 
and several vertices, i.e. conjunction points of networks and 
consecutive center points, respectively. In the previous step, we 
independently derive the elevation of each vertex from original 
point clouds. Nevertheless, some parts of each vertical profile 
may be discontinuous, erroneous, and empty. The following 
process then transforms the coordinates (X, Y, Z) to mileages 
(Stations) and fine-tunes the vertical profiles with three 
mathematical models. The linear, quadratic, or cubic functions 
are used to refine its vertical profile. The mathematical models 
are formulated in Equation  (3), (4), and (5), respectively. The 
modification process would select an optimal function 
according to the minimum standard deviation. Those errors and 
empty values of each road segment are detected and re-
computed. 
 
After vertical refinements, the continuities of horizontal profiles 
may be interfered. In this process, the surface fitting then 
includes those consecutive vertices to smooth their elevations. 
Equation (1) and (2) are considered in the smoothing process. 
However, if a road segment is too long, the used models may be 
insufficient to describe the characteristics of vertical profiles. 

Chen and Lo (2009) considered that road systems are designed 
and organized by low-ordered polynomial models everywhere 
so that the theoretical models can easily represent each sub part 
of one vertical profile. They created some pseudo nodes for 
each road segment and smooth the geometry of cross-sections 
with Equation (1) or (2). The profile refinement is an iterative 
process until the elevation change of each road segment is 
smaller than the designed tolerance. 
 

( )1 11 12L H p p M= +                                                                  (3) 

( ) 2
2 21 22 23L H p p M p M= + +                                                      (4) 

( ) 2 3
3 31 32 33 34L H p p M p M p M= + + +                                      (5) 

 
where p11~p34 are parameters of the line function; M is the 
mileage of each road segment; and H is vertex height. 
 
2.5 Network surface fitting 

This study focuses on the modelling procedure with multiple 
roads using different data and keeps the results continuous in 
elevation and slope. For this purpose, we propose to use B-
spline surface fitting to modify all conjunction points of road 
networks. The elevation correction of each road segment is then 
re-arranged to its internal vertices. In this step, we simplify the 
format of those produced road models for surface fitting. The 
conjunction points are selected and computed their new 
elevations using B-spline curve function, i.e. Equation  (6), to 
maintain the continuities in elevation and slope. After the fitting 
process, all the conjunctions have new height values, and 
elevation changes then bring to each road segment and modify 
the elevations of internal vertices. The iteration stops when the 
elevation change of all road systems is smaller than the 
threshold. In short, the proposed scheme makes the capability to 
reconstruct three-dimensional road models combining different 
data sources. 
 

( )
0

( )
n

i i
i

C u f u P
=

= ∑                                                                  (6) 

 
where Pj are control points and fj is a basis function. 
 
 

3. EXPERIMENTAL RESULTS 

The scheme was validated using data for single and multiple 
layer road systems in Taipei City of northern Taiwan. The area 
has the coverage of 3,200m*6,600m. The test site includes 
arterial streets, local streets, expressways, and mass rapid transit 
in an urban area. The test datasets include topographic maps, 
airborne scanning data, and three-dimensional boundaries. The 
scale of the topographic maps is 1:1000. They contain several 
feature layers, such as buildings, roads, power lines, etc. In 
Taiwan, road boundaries are recorded as independent 
planimetric polylines without topology or transportation 
attributes, as shown in Figure 2. As shown in Figure 3, the 
LIDAR data was derived from a Leica ALS50 system in March 
2007. The flight altitude ranged from 1200 to 1500 m. The laser 
pulse rate was 70 kHz, and the point density was about 10 
points/m2. The random error of laser points in elevation is better 
than 0.15m (ITRI, 2006). The third type dataset is the three-
dimensional road boundaries which were digitized from aerial 
images. The spatial resolution of used DMC images is about 17 
cm. Figure 4 shows edited road boundaries in aerial images. 
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LIDAR road points are incorporated to provide height 
information for three-dimensional surface modelling. A 
threshold for the maximum elevation histogram is used to 
determine which method will be used for road surface 
initialization, i.e., either surface fitting or lowest point selection. 
The radius of a buffer circle is set to be half the roadwidth. 
Based on the experience, this percentage threshold of elevation 
histogram of initial surface modelling would be 30%. The 
reason is that the space interval of the along-track vertices is 
densified to 0.5m. Those local slopes of the vertical profiles are 
assumed to be less than 45。, i.e., the elevation change is smaller 
than 1.5m. Since the slope of a road is seldom larger than 45。, 
the threshold is  reasonable that adapts for general applications. 
Possible interference could be the presence of dense vehicles 
that make the point clouds deviate from the road surface. This 
could lead to unreliable results. For more precise surface 
modelling, the spanning distance between pseudo nodes is set to 
be 200 m, according to the rules of roadway designs. Next, the 
vertical profiles, cross-sections, and intersections are smoothed 
according to either height difference or iterative times. Figure 5 
shows the reconstructed three-dimensional road models. 
 
To evaluate the reconstructed road models, reference LIDAR 
road points are extracted manually. The normal height 
differences between the reference points and the reconstructed 
surfaces are compared to calculate the relative error assessment. 
The index of modelling error is expressed as the root mean 
square error (RMSE). The generated results indicate that the 
RMSEs for the modelled surfaces of test sites are lower than 
0.15 m. Those values indicate that the iteratively local approach 
may lead to modelling errors within the range of random error 
of the raw data. The slopes of reconstructed models in vertical 
profiles and cross-sections are estimated and shown in Figure 6 
and 7, respectively. 
 

 
Figure 2. Road boundaries in topographic maps 

 

(unit: m) 
Figure 3. Sub part of laser scanning data 

 

Figure 4. Digitized road boundaries in aerial images 
 

 

Figure 5. One part of reconstructed models (Overpass)
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Figure 6. Histogram of slope and slope difference of along-track 

profiles 
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Figure 7. Histogram of slope and slope difference of cross-track 

profiles 
 

 
 

4. CONCLUSIONS 

Without considering the landuse changes, the proposed scheme 
integrates topographic maps, airborne laser scanning data, and 
three-dimensional road boundaries for 3D surface modelling. In 
the modelling process, road surfaces are initialized from the raw 
LIDAR data. Additionally, we proposed a network surface 
fitting process to refine those model surfaces from multi-source 
datasets to maintain the continuities in elevation and slope. The 
test site includes local streets, arterial streets, and expressways 
to validate the ability of the proposed scheme. According to the 
experimental results, the three-dimensional surface modelling 
accuracy reaches 0.149 m. In addition, the modelling results 
indicate that this approach reaches an error, which is within the 
random error of the raw data. 
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ABSTRACT:

Today, one of the main applications of multi-source aerial data is the city modelling. The capability to automatically detect objects of
interest starting from LiDAR and multi-spectral data is a complex and an open problem. The information obtained can be also used for
city planning, change detection, road graph update, land cover/use. In this paper we present an automatic approach to object extraction
in urban area; the proposed approach is based on different sequential stages. The first stage basically solves a multi-class supervised
pixel based classification problem (building, grass, land and tree) using a boosting algorithm; after classification, the next step provides
to extract and filter land areas from classified data; the last step extracts roundabouts by the Hough transform and linear roads by a novel
approach, which is robust to noise (sparse pixels); the final representation of extracted roads is a graph where each node represents a
cross between two or more roads. Results on a real dataset of Mannheim area (Germany) using both LiDAR (first - last pulses) and
multi-spectral high resolution data (Red - Green - Blue - Near Infrared) are presented.

1 INTRODUCTION

TODAY the availability of high spatial resolution LiDAR and
multi-spectral data collected by aerial vehicles (manned or

unmanned) traces new ways for the possible applications. City
modeling, object extraction (e.g., buildings, roads, bridges, . . . ),
urban growth analysis, land use/cover, developing 3D models,
are the main studied applications. Usually the analysis of data is
made by a human operator; traditional photo-interpretation is a
slow and expensive process that requires specialized experts; ac-
curacies similar to those of man-made maps can now be reached
by automatic object extraction and classification approaches, but
with considerably less wasted time and money, thus allowing high
update rates.

The ability to automatically classify data starting from a set of
heterogeneous features is fundamental to design an automatic ap-
proach. One of the first method used to classify LiDAR data was
the height threshold to a normalized DSM (nDSM) (Weidner and
Forstner, 1995); using this method it is possible to extract objects
as buildings, but its has a lot of well-known drawbacks: high-
density canopy can be classified as building and it is not possible
to distinguish low height objects as lands or roads. Multi-spectral
data allow to extend the set of classified objects producing higher
accuracy. Many machine learning approaches were adopted to
solve the problem of object extraction from multi-source data;
Bayesian maximum likelihood method (Walter, 2004), Dempster-
Shafer (Lu et al., 2006), boosting using AdaBoost (Frontoni et al.,
2008).

Common objects as buildings or roads are the main interesting
features that can be extracted from the classified data; road ex-
traction is a classical problem of remote sensing, but not com-
pletely solved. A really interesting overview (updated to 2003)
can be found here (Mena, 2003). Using only multi-spectral data
(Bacher and Mayer, 2005), road extraction is an extremely diffi-
cult task especially in urban area also using high-resolution im-
agery as IKONOS or SPOT. Problems as occlusion (due to the
presence of trees), noise inducted by vehicles or object shadows,

influence the quality of road extraction; moreover, spectral sepa-
rability of road respects to other objects (e.g. bituminous roofs)
is not always guaranteed. Snakes/active contours are classical
methodological tools; different version of standard snake (Kass et
al., 1987) were developed to solve the problem of road extraction
especially in not urban area (Marikhu et al., 2006). Moreover this
approach requires a wide set of good seed points, which are often
user defined. The fusion of LiDAR and multi-spectral data is a
powerful tool for road extraction; LiDAR helps to distinguish be-
tween high objects as buildings or canopies, while multi-spectral
data allow to distinguish between land/road and grass or other
low profile objects (Clode et al., 2005). SAR imagery can be
also useful for road extraction with results comparable with Li-
DAR (Guo et al., 2007). However the goodness of LiDAR and
multi-spectral data fusion approaches allows to obtain interesting
results in building / road extraction.

In this paper, a classification approach, using boosting classifier
to fuse LiDAR and multi-spectral data, is presented. The Ada-
Boost technique with CART classifier as weak learner, classifies
data distinguishing among four classes: building, grass, land and
tree; the ReliefF (Liu and Motoda, 2008) feature selection algo-
rithm allows to consider only meaningful features to minimize the
misclassification. The result of classification stage is then used to
extract buildings, roads and roundabouts; the approach here pro-
posed extracts and clusters a set of linear roads using a pyramidal
representation to reduce time and memory usage. The procedure
is totally automatic and requires only a minimum interaction with
user; a user-defined training set is necessary to train the classifier
and control the learning accuracy; the training set often can be di-
rectly accessible by a web-GIS or a photo-interpretation process
over a very small portion of global area; we use a training set that
covers less than 0.5% of total area.

The paper is organized as follows. Section 2 introduces the method-
ology for classification and object extraction; Section 3 explains
the data set used for experiments, the adopted classifer and the
classification results on a four class problem. Section 4 presents
the method and obtained results in road extraction; in Section 5
conclusions and future work are outlined.
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2 METHODOLOGY

Building and road extraction, as mentioned above, require com-
plex elaborations of multi-source data; we followed a multi-step
procedure. The procedure here proposed consists of four sequen-
tial steps; the output of each module is the input for the following.

Step 1 - Feature generation. It calculates LiDAR and radio-
metric additional features for the classification stage; a total
of seven mixed-features are currently adopted.

Step 2 - Classification. Using AdaBoost with a tree classifer
as weak learner, it distinguishes among four main classes; a
simple training set is adopted to train the classifer.

Step 3 - Object Extraction. It extracts buildings and/or roads
from the classified data; in this paper we focus on road ex-
traction and pre-filtering techniques;

Step 4 - Clustering. It is fundamental to model the extracted
objects.

A graphical representation of discussed methodology is shown in
Fig.1.

Figure 1: Methodology. The object extraction procedure has a hi-
erarchical structure that simplifies the phase of result evaluation;
different approaches can be easily tested without compromising
the overall methodology

In the following sections, the results of each stage are presented;
for completeness a deep results evaluation of building extraction
is reported to evidence the quality of classification process; stan-
dard metrics are used to make in evidence the performance of
AdaBoost classifier.

3 CLASSIFICATION

3.1 Dataset

The methodology presented in previous section, was validated in
an urban area: LiDAR and multi-spectral data refer to the centre
of the German city of Mannheim. This area is characterized with
large buildings, mostly attached forming building blocks of dif-
ferent heights, many cars and little vegetation. Mannheim dataset
has a resolution of 0.25m for the images and 0.5m for the range
data; the total grid dimension is 1808 x 1452 (width x height).

The aerial images are orthorectified and four spectral bands are
available: Red, Green, Blue, and Near InfraRed; laser range data
consist of first and last pulse recordings acquired by an airborne
laser scanner. Additional features were added to expand the fea-
ture space; main motivation is that using a feature weighting al-
gorithm, is easy to find the best feature combination. Normal-
ized Difference Vegetation Index (NDVI) and Green Normalized
Difference Vegetation Index (GNDVI) were calculated. These
indexes are useful to distinguish between some critical classes
which LiDAR data cannot easily distinguish. Two pairs are criti-
cal: building/tree and land/grass. NDVI is a compact index which
allows to better discriminate inside each cited pair. It is well
known that canopies and grass have a NDVI value usually greater
than 0.15, while for building and land classes is usually around or
below zero. As introduced in the previous sections, we identified
four main classes; for each class, we selected eight representative
polygons. The total area of training set is below the 0.5%; it is
useful to remark that the selection of these polygons is a low-time
consuming activity that can be easily performed using a web-GIS
or photo-interpretation (easy owing to the reduced number and
kind of classes). The training set and a 3D view of the input data-
set are shown in Figures 2 and 3.

Figure 2: Data and Training set. Red stands for building, yellow
for land, blue for grass and green for tree

Figure 3: A 3D view of dataset; height of objects are obtained
using the first pulse laser range data

The selected features used for classification are:

LiDAR: ∆h is the height difference between the last pulse DSM
and the DTM and ∆p is the height difference between the
first pulse and the last pulse DSM

Spectrals: R,G,B,NIR and NDVI (GNDVI is omitted because
the weight associated to this feature was low)
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The algorithm used for feature weighting was the ReliefF (Liu
and Motoda, 2008); features with highest weights are ∆h, ∆p
and NDVI; G B R and NIR have low weights; the goodness of
selection is also demonstrated by the obtained results varying the
set of features in the classification phase. The Weights obtained
by the ReliefF algorithm are shown in Fig. 4.
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Figure 4: Results of ReliefF algorithm applied to the set of seven
features; the n parameter represents the number of nearest in-
stances from each class.

Analyzing the weight of each feature, it is evident as the LiDAR
features ∆p and ∆h and the NDVI have the higher values; pure
radiometric features do not allow to classify data correctly due to
the lack of spectral separability.

3.2 Thresholding Normalized DSM

Thresholding Normalized DSM is a simple technique that allows
to classify LiDAR data; only few objects can be extracted, mainly
buildings. Problems which afflict this approach are the ambiguity
of high density canopies and the impossibility to distinguish be-
tween land and grass. nDSM is defined as the subtraction of the
DTM from the DSM of the same scene. A normalized DSM con-
tains objects on a plane of height zero. Assuming that buildings
in the scene have a known range of height, and that the heights of
all other objects fall outside this range, buildings can be detected
by applying appropriate height thresholds to the nDSM.

3.3 AdaBoost

AdaBoost (short for ”adaptive boosting”) is presently the most
popular boosting algorithm. The key idea of boosting is to create
an accurate strong classifier by combining a set of weak classi-
fiers. A weak classifier is only required to be better than chance,
and thus can be very simple and computationally inexpensive.
Different variants of boosting, e.g. Discrete AdaBoost, Real Ada-
Boost (used in this paper), and Gentle AdaBoost (Schapire and
Singer, 1999), are identical in terms of computational complex-
ity, but differ in their learning algorithm. The Real AdaBoost
algorithm works as follows: each labelled training pattern x re-
ceives a weight that determines its probability of being selected
for a training set for an individual component classifier. Starting
from an initial (usually uniform) distribution Dt of these weights,
the algorithm repeatedly selects the weak classifier ht (x) that re-
turns the minimum error according to a given error function. If a
training pattern is accurately classified, then its chance of being
used again in a subsequent component classifier is reduced; con-
versely, if the pattern is not accurately classified, then its chance
of being used again is raised. In this way, the idea of the algorithm
is to modify the distribution Dt by increasing the weights of the
most difficult training examples in each iteration. The selected

weak classifier is expected to have a small classification error on
the training data. The final strong classifier H is a weighted ma-
jority vote of the best T (number of iterations) weak classifiers
ht (x):

H (x) = sign

(
T∑

t=1

αtht (x)

)

It is important to notice that the complexity of the strong classi-
fier depends only on the weak classifiers. The AdaBoost algo-
rithm has been designed for binary classification problems. To
deal with non-binary results we used a sequence of binary clas-
sifiers, where each element of such a sequence determines if an
example belongs to one specific class. If the binary classifier re-
turns a positive result, the example is assumed to be correctly
classified; otherwise, it is recursively passed to the next element
in this sequence; this techniques is known as ”one against all”.
As weak classifer in this paper, a Classification And Regression
Tree (CART) with three splits and T = 35 was used.

The CART method was proposed by (Breiman et al., 1984). CART
produces binary decision trees distinguished by two branches for
each decision node. CART recursively partitions the training data
set into subsets with similar values for the target features. The
CART algorithm grows the tree by conducting for each decision
node, an exhaustive search of all available features and all possi-
ble splitting values; the optimal split is determined by applying
a well defined criteria as Gini index or others ones (Duda et al.,
2000).

3.4 Classification Results

In order to extract objects of interest from the previous described
dataset, all the data were classified. In Fig. 5, the best result
(in terms of detection rate) of classification using AdaBoost is
shown. Moreover to evaluate correctly the quality of classifica-
tion, a ground truth for buildings was manually created (see Fig.
6); the ground truth for the remaining classes actually is not avail-
able but it is planned to cover all the area to analyse exactly the
classifier performance.

Figure 5: Results of classification using AdaBoost and the train-
ing set of 32 polygons; red stands for building, yellow for tree,
blue for land and green for grass

In Table 1 the results for building extraction with different sets
of features are highlighted; according to the weighting algorithm,
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Figure 6: Ground truth used to evaluate the classification results;
white pixels are buildings, blacks one are remaining objects

the combination of ∆h, ∆p and NDVI has the best performance
in different indexes. A detailed description of indexes is1:

DR - Detection Rate: DR = TP/(TP + FN + UP )

FPR - False Positive Rate: FPR = FP/(TN + FP + UN)

FNR - False Negative Rate: FNR = FN/(TP +FN +UP )

UPR - Unclassified Positive Rate: UPR = UP/(TP +FN +
UP )

OA - Overall accuracy: OA = (TP + TN)/(TP + TN +
FP + FN)

R - Reliability: R = TP/(TP + FP )

TUR - Total Unclassified Rate: TUR = (UP + UN)/(TP +
TN + FP + FN + UP + UN)

Classifier DR FPR FNR UPR
nDSM 94,49 10,69 5,51 0,00
AdaBoost 3F 87,44 1,33 7,31 5,25
AdaBoost 5F 91,17 3,95 7,08 1,75
AdaBoost 7F 88,84 1,57 4,76 6,40

Classifier OA R TUR
nDSM 91,24 83,95 0,00
AdaBoost 3F 96,13 97,50 8,16
AdaBoost 5F 94,66 93,18 4,30
AdaBoost 7F 96,97 97,10 8,96

Table 1: Results of pixel-based classification using different sets
of features and metrics

AdaBoost 3F, 5F and 7F differ for the set of features; 3F classifier
uses ∆h, ∆p and NDVI, 5F adds Green and Blue; AdaBoost 7F
classifies data using all features (excluding GNDVI). The Ada-
Boost 3F guarantees the best performance if compared with Ada-
Boost 5F/7F; adding more features other than ∆h, ∆p and NDVI,
the classifier misclassifies data due lack of spectral separability
(confirmed by ReliefF). All the classified data are also used for
the road extraction; in particular the binary image obtained by
considering land (bit set to one) and remaining classes (bit set
zero) represents the input for roundabout and road extraction; the
approach and results are presented in the following section.

1TP/FP = true/false positive TN/FN = true/false negative UP/UN =
unclassified positive/negative

4 ROAD EXTRACTION

In this section we present preliminary results on road/roundabout
extraction starting from classified data; the proposed approach
works fine when the area is urban; modern cities often grows
around main ancient perpendicular roads (cardus-decumanus). The
key idea behind the algorithm is the “line growing”; more details
about algorithm are discussed in next sub-sections.

4.1 Filtering

Filtering is a preliminary process before road extraction; this ac-
tivity is necessary for two main reasons: the first one is the pres-
ence of noisy classified data, because pixel-based classification
suffers of noise; other approaches based on regions (object-based
classification) can reduce it. The second problem that influences
the quality of road extraction is the presence of trees/canopies;
the chosen approach is a non-linear filter; if pixels that appertain
to tree class have neighbours classified as “land”, then they are
assigned to land class. The advantage of using this filter, is the
reduction of effect produced by occlusions. In Fig. 7 the result of
the filtering process is shown.

Figure 7: Filtering. In the top image white pixels are classified as
land; classification is noisy due to the presence of small objects
as vehicles; in the bottom, the non-linear filter allows to reduce
significantly the effect of noise and occlusions

Non-linear filter consists of two steps: the first one is the reduc-
tion of noise using morphological operators. We applied three
algorithms: opening to remove small objects, morphological re-
construction to retrieve boundaries and closing to fill small holes;
the structuring element used was disk of size two. Second step is
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to reduce the effect of canopy occlusions. The non-linear filter is
a moving kernel of 7x7 that substitutes pixels classified as “tree”
if and only if neighbours are “land”. In Fig. 7 red blobs put in
evidence the reduction of occlusions due to the presence of trees.

4.2 Roundabout Extraction

After filtering, before extract roads, roundabouts are identified us-
ing a Hough transform applied to circular shapes. Hough trans-
form is useful to extract well-defined shapes as lines, circles or
ellipse; the major drawback is the computational time, which is
high especially for complex shapes (in terms of number of pa-
rameters) as ellipses. In Fig. 8, a roundabout extracted from
Mannheim dataset is shown.

Figure 8: Hough transform applied to Mannheim dataset to find
circular shapes as roundabouts

The Hough transform usually tends to overfit the real number of
circular shapes; we use a double thresholding (min - max) to fil-
ter the output of Hough. Roundabout shown in Fig. 8 is cen-
tred on x = 1194, y = 378 with a radius of 47 pixels (about
22m); min-max values are determined from typical values for
small and/or large roundabouts. The input image for the Hough
transform is obtained by the classified data; in Fig.7 the binary
image is shown; the approach was tested also on different im-
ages to validate the extraction procedure; it is also possible to
extract more complex roundabouts (e.g., elliptical) using the Ran-
domized Hough Transform also in presence of partial occlusions
(Hahn et al., 2007). The roundabouts identified with Hough trans-
form mask the filtered data supporting the next step: line extrac-
tion and clustering.

4.3 Linear Road Extraction

Segment extraction approach starts from the filtered data masked
with roundabouts. Proposed method is similar to region growing
technique usually applied in image segmentation; starting from
a seed point of size one, classified as “land” the algorithm ex-
pand regions (in this case a segment) adding one or more pix-
els of same class; growing process ends when the region meets
a set of N pixels classified as not-land. The main difference
with the classical region growing is the size of growing space.
In the case of image segmentation, growing space is 2D; in the
case examined in this paper, the expansion is one-dimensional;
next pixel (in both direction left and right) is calculated using
the line parameters in terms of angular value; the pseudo-code
of proposed algorithm is shown in Algorithm 1. The algorithm
has two parameters: T1 and T2. T1 is used to stop growing
process if T1 consecutive points (spurious pixels) classified as

Algorithm 1 Extraction of linear segments
Require: x vector of classified data

1: S vector of extracted segments
2: s vector of candidate pixels belonging to a segment
3: p vector of aligned pixels
4: for j = 0 to j < height do
5: for i = 0 to i < width do
6: for θ = −π/2 to π/2 do
7: p← calculate segment points(i, j, θ)
8: start← 0
9: s.clear

10: for k = 0 to k < p.size do
11: n = count spurious pixels(s, start, x)
12: if n > T2∨i == (width−1)∨j == (height−

1) then
13: if p.length > T1 then
14: S.add(s)
15: s.clear
16: start← k + 1
17: else
18: s.add(p[k])
19: end if
20: end if
21: k ← k + 1
22: end for
23: θ ← θ + 1
24: end for
25: i← i + 1
26: end for
27: j ← j + 1
28: end for

not-land are encountered. T2 is a criteria to specify the mini-
mum length of segment; the values of these parameters were set
to T1 = 2 and T2 = 30; a pyramidal down-scaling (factor 0.5) is
performed on filtered data to reduce the complexity of computa-
tion. The calculate segment points(j, i, θ) function, given an
origin (j, i) in the image reference system, and an orientation θ,
returns a list of pixels that belongs to the parametrized line, while
the count spurious pixels(s, start, x) returns the number of
spurious pixels (classified as not land) along the segment. The
add function adds a segment to vector S or adds a pixel p[k] to
the vector of candidate pixels belonging to a segment. In Fig.9 an
example of segment extraction on a synthetic image is shown; the
best segment orientation is chosen as the angular value that min-
imizes the number of segments extracted; if thresholds T1 and
T2 are set properly, the minimum point is not strongly afflicted
by the presence of noise.

Figure 9: Segment extraction. Top image represent an ideal seg-
ment extraction while in the bottom it is tested a noisy image
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The best orientation for a road is chosen by minimizing the num-
ber of extracted segments (as shown in Fig.9); a road can be de-
fined as the minimum set of segments with a length greater than
T2 and same angular value. The set of segments which forms
a road is created applying a clustering algorithm; the DBSCAN
(Ester et al., 1996) is adopted to group the set of extracted seg-
ments. A segment belongs to a cluster if and only if the distance
between the initial point of segment and the nearest neighbour is
under a threshold; if this geometric criteria is satisfied the lengths
of clusterized segments are also checked. If the length are compa-
rable (in terms of distance from the mean value of the cluster) the
set of cluster is labelled as road and the centerline is calculated.
In Fig.10 a series of tests on Mannheim data-set for different
orientations is shown. Tests put in evidence that the algorithm,
owing to the clustering, does not consider incoherent segments
(Fig.10c).

Figure 10: Road extraction for three different angles; segments
are the thick red lines (bottom), while raw ones are shown in top

The extracted geo-referenced and vectorial road graph with the
proposed technique is shown in Fig.11; some roads are not cor-
rectly identified due to presence of high density canopies.

Figure 11: Road graph for Mannheim data-set

5 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a complete methodology to solve the
problem of automatic extraction of urban objects from multi-
source aerial data. The procedure, which consists of sequential
steps, takes advantage of classified data with a powerful machine
learning algorithm as AdaBoost with CART as weak learner. The
capability of distinguishing among four classes in an urban area
as Mannheim increases the set of possible applications; two test
cases were presented: building and road extraction. In the case of
building extraction, the fusion of spectral data with LiDAR data
using AdaBoost overtakes the limits of a simple nDSM thresh-
olding especially when canopies have a high density. The pro-
posed road extraction method allows to reduce the effect of oc-
clusions;roads, extracted with the “line growing” approach en-
hanced with clustering, well match with a photo-interpretation

process. As future works, more tests on more complex data with
curved lines will be performed; moreover different weak learners
based on RBF Neural Networks will be tested.
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ABSTRACT: 
 
Road roundabouts, as a class of road junctions, are generally not explicitly modelled in existing road extraction approaches. This 
paper presents a new approach for the automatic extraction of roundabouts from aerial imagery through the use of prior knowledge 
from an existing topographic database. The proposed snake-based approach makes use of ziplock snakes. The external force of the 
ziplock snake, which is a combination of the Gradient Vector Flow force and the Balloon force, is modified based on the shape of 
the roundabout central island to enable the roundabout border to be delineated. Fixed boundary conditions for the proposed snake are 
provided by the existing road arms. A level set framework employing a hybrid evolution strategy is then exploited to extract the 
central island. Black-and-white aerial images of 0.1 m ground resolution taken over suburban and rural areas have been used in 
experimental tests which have demonstrated the validity of the proposed approach. 
 
 

1. INTRODUCTION 

The need for accurate spatial databases and their automatic 
updating is increasing rapidly. Road networks form key 
information layers in topographic databases since they are used 
in such a wide variety of applications. As the extraction of 
roads from images is still generally manual, costly and time-
consuming, there is a growing imperative to automate the 
process. However, such a feature extraction task has longed 
proved difficult to automate. The problem for automatic road 
extraction lies mostly in the complex content of aerial images. 
To ease the complexity of the image interpretation task, prior 
information can be used (Gerke, 2006; Boichis et al., 2000; 
Boichis et al., 1998; De Gunst, 1996). This often includes the 
provision of data from an external topographic database.  

Roundabouts, as a class of road junctions, are important 
components of a road network and if modelled well can 
improve the quality of road network extraction (Boichis et al., 
1998). However, there are only few approaches which are 
dedicated to this task. Boichis et al. (2000) presented a 
knowledge based system for the extraction of road junctions 
and roundabouts. The method assumed that the description of 
simple road junctions and roundabouts is the same in the 
external database, so a previous detector has to certify the 
presence of the circular form. A parametric Hough Transform is 
used for this purpose. The roundabout is reconstructed after 
straight parts of the connecting roads, curved parts including 
splitter islands, and the circulating road are extracted.  

These elements are connected using geometric and radiometric 
continuities. In the approach, roads are treated as linear objects. 
Thus, elements such as the central island and the roundabout 
outline are not extracted, so kind of modelling does not always 
reflect the required degree of detail. In Fig. 1, vector data is 
superimposed on sample images to illustrate the problem. The 
image resolution is such that the roundabout’s central area 
covers the central island and the circulating roadway. In Fig. 
1b, the roundabout is represented as point object neglecting the 
central island and the circulating roadway. Thus, a detailed 

modelling of roundabouts is needed for data acquisition 
purposes at large scales. 

The detailed modelling of road roundabouts area objects is 
discussed in this paper, and an approach for their automatic 
extraction is proposed. This uses an existing topographic 
database leading to the extraction of refined roundabout data. In 
the following section, a model for roundabouts is first 
introduced. The stages of the proposed strategy are then 
illustrated in Sect. 3. Results from the implementation of the 
proposed approach using aerial imagery of 0.1 m ground 
resolution are presented and discussed in Sect. 4, together with 
an evaluation of their quality. Finally concluding remarks are 
offered. 

  
                                (a)                             (b) 
Figure 1. Superimposition of vector data on high resolution 
aerial images of road roundabouts. 
 

2. ROUNDABOUT MODEL 

Illustrated in Fig. 2a is the conceptual two-part model of a 
roundabout, the parts being the roundabout itself and the road 
arms. The roundabout, where road arms are connected, is in 
turn composed of the roundabout border and its central area 
where a central island is located. A road arm is a rectilinear 
object which is represented as a ribbon with a constant width 
and two parallel road edges. Disturbances such as occlusions 
and shadows are not explicitly included in the model. 

3. EXTRACTION APPROACH 

The proposed strategy consists of three steps (Fig. 2b). First, the 
topographic geospatial database is analysed and different types 
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of parameters for roundabouts are derived. Second, the central 
island is extracted using a level set approach making use of 
prior information obtained from the previous step. Finally, the 
roundabout is reconstructed using a snake-based method. The 
proposed approach has the aerial image, a topographic database 
and the road arms as input, and the roundabout border 
connected to the existing road arms as output. The reader is 
referred to Ravanbakhsh et al. (2008) or Ravanbakhsh (2008) 
for a description of how the road arms are extracted. 
 
3.1 Pre-analysis of topographic database  

Roundabouts are usually represented in topographic databases 
in one of two ways, either as an area object when the diameter 
of the inscribed circle is larger than the threshold (Fig. 1a), or as 
a point object when the diameter of the inscribed circle is small 
(Fig. 1b). The actual representation threshold varies in different 
topographic databases. This vector data is used to focus the 
extraction process to the image regions where roundabouts are 
located. Furthermore, the approximate diameter of the central 
island and width of the circular roadway can be initially 
determined (Fig. 3).  
 

It is noteworthy that the width of the circular roadway depends 
mainly upon the number of entry lanes. The width of entry 
lanes is also derived from vector data. According to 
construction standards, the roadway must be at least as wide as 
the maximum entry width and generally should not exceed 1.2 
times this width (U.S. Federal Highway Administration, 2000). 
In case that a roundabout appears as a point object, attributive 
information must be included in the topographic database 
implying that the node represents a small roundabout. This 
means that the diameter of the inscribed circle is below the 
threshold that has been defined in the topographic database. 
 
3.2 Central island extraction 

With roundabouts, a correct extraction of the central island 
helps facilitate the extraction of the outline. The reason for this 
is that the central island, when enlarged, influences the shape of 
the roundabout outline. The initial detection of the central 
island can then provide a good idea of how the outline appears 
in the image. The proposed method to detect central islands is 
based on level sets.  

Geometric active contours were introduced by Caselles et al. 
(1993) and Malladi et al. (1995). These models are based on 
curve evolution theory and the level set method. The basic idea 
is both to represent contours as the zero level set of an implicit 
function in a higher dimension, usually referred to as the level 
set function φ, and to evolve the level set function according to 
a partial differential equation (PDE). It is well known that a 
signed distance function, a function which introduces the 
minimum distance from every point in a defined domain to the 
zero isocontour of a level set function, must satisfy the 
desirable property of |∇φ |=1 (Osher and Fedkiw, 2002). The 
following formula has been proposed to provide the internal 
energy of a snake which penalizes the deviation of φ  via a 
signed distance function (Li et al., 2005):  

dxdyP 2)1||(
2
1)( −∇= ∫Ω φφ  

 
                                               (1) 

P(φ) is a metric to characterize how close the function φ is to a 
signed distance function in a specified computational domain 

2R⊂Ω .  The external energy is defined by 
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where λ>0 and v is a constant and the length term )(φgL  and 

area term )(φgA  are defined by 
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with the edge indicator function g being given by  
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Here, H is the Heaviside function,δ the univariate Dirac 
function, σG the Gaussian kernel with standard deviation σ , 
and I  image intensity. 
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                                           (a)                                                                                                       (b) 

Figure 2. (a) Roundabout model and (b) workflow of roundabout extraction.  
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Figure 3. Schematic illustration of the relationship between 
roundabout geometric parameters. Vector data is in green. 
 
The resulting total energy function can now be defined: 

       )()( )( φφμφ mEPE +=                                                (6) 

where μ>0 controls the balance between the first and second 
term. The evolution equation of the level set function is then 
obtained via calculus of variation (Courant & Hilbert, 1953) 
and application of the steepest descent process for minimization 
of the energy functional equation (Li et al., 2005) as 
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(7) 
 

For all examples of central island detection, the same set of 
control parameters, λ=4, μ=0.13, v=2 and the time step ∂t=2, 
were tuned for the evolution equation (Eq. 7). 
 
Since either evolution type alone, shrinking and expansion, has 
its own limitations, a hybrid evolution strategy is employed. For 
instance, in case of only shrinking curve evolution, vehicles on 
the circulating roadway, and in case of only expansion curve 
evolution, structures inside the central island, can block the 
motion of the curve toward the central island’s border. Using a 
hybrid evolution strategy overcomes various kinds of 
disturbances often present inside and outside the central island.  
 

Often before the curve evolution begins, a pre-processing step 
is necessary to remove some fine features that might hinder the 
curve motion. First, a morphological closing operator is applied 
in order to remove dark spots and subsequently the opening 
with the same structuring element (disk structuring element; 
size=2) is performed to eliminate small bright features followed 
by Gaussian smoothing (Fig. 4c).  

 

          
                   (a)                        (b)                       (c) 
Figure 4. Pre-processing sequence: (a) Original image, (b) cut-
out marked by the red box in (a), and (c) pre-processed result. 
 
Shown in Fig. 5 is the first sequence for island extraction, when 
shrinkage curve evolution is applied. After the vertices of the 
polygonal area identified as a roundabout object in the 

topographic database are located, the polygon is enlarged so 
that its increased area is one-tenth more than its initial area (Fig. 
5a), thereby making sure that the new polygon is located 
outside the central island. Subsequently, shrinkage evolution 
begins through use of level sets. Among the obtained closed 
curves in Fig. 5b, the one with the largest area is selected as the 
initial guess for the island (Fig. 5c). This island candidate is 
subject to further processing. 

Next, the initial polygon obtained from vector data is made 
smaller so that its area is reduced by half (Fig. 5a).  
Subsequently, expansion curve evolution occurs (Fig. 6a). The 
largest resulting closed curve is most likely the desired solution 
due to the fact that the island is the largest object within the 
computational domain. This closed curve, however, can often 
not be regarded as the island because many disturbing features 
such as trees and various structures exist inside the island. This 
can block the motion of the evolving curve towards the island 
boundary. Leakages are therefore created at some points along 
the boundary of disturbing features where zero level curves 
have stopped in order to pass over them. 
 

   
                (a)                            (b)                            (c) 
Figure 5. First sequence for island extraction: (a) Polygonal 
vector data (green) and its enlarged and reduced forms(red), (b) 
shrinking curve evolution result after 1335 iterations, and (c) 
the eventual result of shrinking evolution. 
 

With the assumption that disturbing objects inside the island do 
not contain smooth boundaries, cubic spline approximation is 
carried out to provide leakages (Fig. 6b). Subsequently, 
expansion evolution and spline approximation are repeatedly 
carried out (Fig. 6c) until no change in the position of the curve 
is reported. Again, the largest closed curve is regard as the 
island (Fig. 6d). Now that the results of island detection from 
the iterative expansion and shrinkage curve evolution have been 
obtained, the image positions of the resulting curves are 
compared and those points which are close to each other are 
selected, thereby eliminating curve positions that are not 
located on the island boundaries. The selection of points is 
based on their closeness in such a way that points having a 
distance below a certain threshold are selected. The final result 
is obtained when an ellipse is fitted to the selected points. 
 

When a roundabout appears as a point object in the topographic 
database (Fig. 1b), the same hybrid evolution strategy is used 
but with a different initialization because the diameter of the 
inscribed circle is known to be below a given threshold, but 
how small it is is unknown. This brings some limitations for the 
shrinkage curve evolution. In order to apply the shrinkage 
evolution, the initial zero level curve must be placed outside the 
island. Since the approximate diameter of the inscribed circle is 
unknown, three successive circles are defined (Fig. 7a), on each 
of which the shrinkage curve evolution is carried out separately. 
The diameter of the circle interior to the central island is 10 m 
and the diameters of exterior circles have an interval of 3 m. 
The results of shrinkage evolution on each initial curve from the 
largest to the smallest circle are depicted in Figs. 7b, c and d. In 
the next step, the iterative expansion evolution is carried out 
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similarly to the method described earlier with the exception that 
the initial curve is defined as a circle around the roundabout 
node so that it must be placed inside the island (Fig. 7a). 
 
 

       
                         (a)                                         (b) 

       
                         (c)                                          (d) 
Figure 6. Island extraction: (a) Expansion evolution result after 
1330 iterations, (b) selected curve (red) and approximated cubic 
spline (green), (c) other curves resulting from iterative curve 
evolution, and (d) eventual result of expansion evolution. 
 
The diameter of the circle needs to be less than the threshold 
which dictates whether islands are regarded as point or area 
objects in the topographic database. By experiment, it is safer to 
define a circle with a diameter as one-third of this threshold. 
The expansion result is compared with each group of shrinkage 
results separately, and points that are close enough to each other 
are selected. These points are candidates for ellipse fitting. The 
fitting result for a case with the highest number of points is 
more likely to produce a correct result of island extraction (Fig. 
7f).  
 

      
             (a)                     (b) n=1710                (c) n=1440 

     
       (d) n=4606                      (e)                             (f) 
 
Figure 7. First sequence for island extraction: (a) initial 
successive circles, 3 located outside central island for shrinking 
evolution and 1 inside for expansion curve evolution; (b), (c) 
and (d) results of the shrinking evolution for exterior circles 
from large to small (n denotes iteration number); (e) result of 
iterative expansion evolution to interior circle; (f) final result. 
 

Extracted central islands are verified using the existing 
information derived from the topographic database. When a 
roundabout appears in the database as an area object, as shown 
in Fig. 3, the diameter of its central island (D1) obtained from 
the extraction process must only differ from that obtained from 
vector data (D2) by a small amount. In an ideal situation, the 
difference (∆D) corresponds to the width of the circulating 
roadway (W), i.e. W=∆D. In practice, due to the imprecise 
digitization of roundabouts, polygonal vector data do not 
always lie on the middle axis of the circulating roadway, but 
somewhere within its area. Therefore, ∆D is expected to be 
within the range of 0 to 2W, i.e. 0< ∆D<2W.  
 

In the case where a roundabout appears as a point feature, the 
diameter of the extracted central island must fall within a 
predefined range whose highest value is the threshold below 
which a roundabout is regarded as a point object and whose 
lowest value is the minimum possible diameter for a central 
island. 
 

3.3 The Snake Model for Roundabout reconstruction 

The snake model, or parametric active contour method (Kass et 
al., 1988), used to delineate the roundabout outline is now 
briefly overviewed to provide a basis for further discussion. 
Further details are provided in Ravanbakhsh et al. (2008) and 
Ravanbakhsh (2008). Snakes are especially useful for 
delineating objects that are hard to model with rigid geometric 
primitives. They are thus well suited to modeling roundabouts 
since the borders are of diverse shape with various degrees of 
curvature. Snakes are polygonal curves associated with an 
objective function that combines an image term (external 
energy) and measurement of the image force (e.g. the edge 
strength). There is also a regularization term (internal energy) 
and a minimization of the tension and curvature of the polygon. 
The curve is deformed so as to iteratively optimize the objective 
function. Traditional snakes are sensitive to noise and need 
precise initialization. Since roundabout borders have various 
degrees of curvature, a close initialization cannot often be 
provided. As a result, traditional snakes can easily get stuck in 
an undesirable local minimum. 
  

To overcome these limitations, the ziplock snake model was 
developed (Neuenschwander et al., 1997). A ziplock snake 
consists of two parts: an active part and a passive part. The 
active part is further divided into two segments, indicated as 
head and tail, respectively (Fig. 8). The active and passive parts 
of the ziplock snake are separated by moving force boundaries. 
Unlike the procedure for a traditional snake, the external force 
derived from the image is turned on only for the active parts. 
Thus, the movement of passive vertices is not affected by any 
image forces. Starting from two short pieces, the active part is 
iteratively optimized to image features, and the force 
boundaries are progressively moved towards the centre of the 
snake. Each time that the force boundaries are moved, the 
passive part is re-interpolated using the position and direction of 
the end vertices of the two active segments. Optimization is 
stopped when force boundaries meet each other. 
 

Ziplock snakes need far less initialization effort and are less 
affected by the shrinking effect from the internal energy term. 
Furthermore, their computation is more robust because the 
active part, whose energy is minimized, is always quite close to 
the contour being extracted. This modified snake model can 
detect image features even when the initialisation is far away 
from the solution. However, it can still become confused in the 
presence of disturbances. In high resolution aerial images, such 
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disturbances may destabilize the ziplock’s active vertices. As a 
result convergence may not occur or the snake may get trapped 
near the initial position. As a means of overcoming this 
problem, an external force with a large capture range can be 
applied. 

The Gradient Vector Flow (GVF) field (Xu & Prince, 1997), 
which is an example for such an external force, is used in the 
proposed approach. The GVF field was aimed at addressing two 
issues: a poor convergence to concave regions, and problems 
associated with the initialisation. It is computed as a spatial 
diffusion of the gradient of an edge map derived from the 
image. This computation causes diffuse forces to exist far from 
the object, and crisp force vectors to be near the edges. The 
GVF field points toward the object boundary when very near to 
the boundary, but varies smoothly over homogeneous image 
regions, extending to the image border. The main advantage of 
the GVF field is that it can capture a snake from a long range. 
Thus, the problem of far initialization can be alleviated. 

The Evolution of a ziplock snake is illustrated in Fig. 8. The 
snake is fixed at the head and tail, and it consists of two parts, 
the active and the passive vertices. These parts are separated by 
moving force boundaries. The active parts of the snake consist 
of the head and tail segments. 
 

Force Boundaries 

Passive Vertex  
Active Vertex 

Head 

Tail 

 
 

Figure 8. Evolution of a ziplock snake. 
 
The GVF is defined to be the vector field 

)),(),,((),( yxvyxuyxG =  that minimizes the energy 
functional: 
 

dxdyfGfvvuuE yxyx
222222 ||||)( ∇−∇++++= ∫∫μ    

                                                                                                 (8) 
where f∇  is the vector field computed from ),( yxf  having 

vectors pointing toward the edges. ),( yxf  is derived from the 
image and it has the property that it is larger near the image 
edges.  

The regularization parameter μ should be set according to the 
amount of noise present in the image; more noise requires a 
higher value of μ . Through use of calculus of variations 
(Courant & Hilbert, 1953), the GVF can be found by solving 
the following Euler equations:  
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where 2∇  is the Laplacian operator and xf and yf  are partial 

derivatives of  f  with respect to x and y. 
  
Let ))(),(()( sysxsV =  be a parametric active contour in which 
s  is the curve length and x and y are the image coordinates of 
the 2D-curve. The internal snake energy is then defined as 
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where 
sV  and ssV  are the first and second derivatives of V with 

respect to s . The functions )(sα  and )(sβ  control the 
elasticity and the rigidity of the contour, respectively. The 
global energy  
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needs to be minimized, with αα =)(s  and ββ =)(s  being 
constants.  Minimization of the energy function of  Eq. 11 gives 
rise to the following Euler equations: 
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where )(sV  stands for either )(sx  or )(sy , and ssV  and 

ssssV  denote the second and fourth derivatives of V , 
respectively. After approximation of the derivatives with finite 
differences, and conversion to vector notation with 

),( iii yxV = , the Euler equations take the form  
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where ( , )G u v  is the GVF vector field .  Eq. 13 can be written 
in matrix form as 
 

( , ) 0KV G u v+ =                                                                    (14) 
 

where K  is a pentadiagonal matrix.  

Finally, the motion of the GVF ziplock snake can be written in 
the form (Kass et al., 1988)  

[ ] [ ]
[ ]1

11(  ) (   G(u,v) | )t
t t

v
V K I Vγ γ κ −

−−= + ∗ −               (15) 
 

where γ  stands for the viscosity factor (step size) determining 
the rate of convergence and t  is the iteration index. κ  alters 
the strength of the external force.  

It is noteworthy that the proposed model still might fail to 
detect the correct boundaries in the following cases:  

• High variation of curvature at the roundabout border 
resulting in an initialization that is too poor in some parts, 
with the consequence that the snakes becomes and remain 
straight.  

• The roundabout central area lacks sufficient contrast with 
the surroundings, causing the curve to converge to nearby 
features.  
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Through the use of shape description parameters such as 
curvature computed from the snake vertices, another force can 
be added to the GVF force field. This is the so-called balloon 
force, which lets the contour have a more dynamic behaviour 
(Cohen, 1991), thereby addressing the two described problems. 
This new force, which makes the contour act like a balloon, 
applies an inflating effect to the contour to localize the concave 
part of the roundabout outline:  

)(1 snkF =                                                                      (16) 
 

where )(sn  is the normal unitary vector of the curve at point 

)(sV  and 1k  is the amplitude of the force. The combination of 
the GVF force field and the balloon force modifies Eq. 15 to the 
form  
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      (17) 

The balloon force is activated when the snake’s passive and 
active parts are approximately straight, i.e. their overall 
curvature, which is defined as the sum of the absolute 
curvatures along the curve, is below a threshold. It is applied 
only on the passive part of the curve. This is regarded as lying 
outside the roundabout’s border, whereas the snake at the active 
parts is assumed to be on the right track. The direction in which 
the balloon force is applied is towards the roundabout central 
area. However, in order to be able to delineate the roundabout 
outline, the balloon force has to be applied in two different 
directions, central island inwards and outwards (Fig. 9a). 
 

The answer to the question of when and in which direction the 
balloon force needs to be applied differs for different samples. 
As a result, several parameters need to be tuned on an ad hoc 
basis to address this question, which is not a desirable 
requirement. To resolve this, the external force field of the 
snake approach described so far is modified based on the shape 
of the central island. As the shape of the roundabout outline 
corresponds to the shape of the enlarged central island, the 
island is enlarged to an extent depending on the width of the 
circulating roadway (Fig. 9b). Subsequently the snake external 
force field is modified based on the enlarged central island. The 
external force field in the enlarged central island is replaced 
with the GVF of an intensity-step image (Fig. 9c) whose main 
characteristic is that its external force points directly from the 
centre outwards so that snakes situated in this area are drawn 
toward the outline of the roundabout.   
 
The intensity-step image is generated from a signed distance 
function. To generate this function, the border of the enlarged 
central island is taken as the reference (Fig. 9b). Successive 
concentric layers at a specific distance interval from the 
reference to the centre point are then defined. Conversely, 
proportional to the distance of each layer to the reference, an 
intensity value is calculated and assigned to the respective 
layer, i.e. layers closer to the reference curve are brighter and 
vice versa.  
The obtained intensity-step image has a gradual increase of 
intensity values from the centre point towards the reference 
curve. Consequently, its GVF field points directly outward. The 
modified force field pulls the snakes toward the outline even if 
the initialization is far away from true borders. Furthermore, 
with this modified force field, problems created by the presence 
of various kinds of disturbances such as trees and vehicles 
within and outside the central island are overcome. An example 
illustrating the improved result using the proposed modified 
force field is shown in Fig. 10. The complete reconstruction of a 

roundabout using the proposed modified snake model is shown 
in Fig. 11, along with intermediate results. 
 

         
               (a)                           (b)                            (c) 

 

Figure 9. (a) Two directions in which the balloon force is 
applied; (b) reference for the signed distance function (white 
curve) computation and concentric regions (black curves); (c) 
intensity-step image from the signed distance function. 
 
 

                   
                   (a)                         (b)                        (c) 

 

Figure 10. The effect of the modified external force field: (a) 
intersection lines (black) from initial snakes, (b) results from 
unmodified GVF, and (c) improved results with modified GVF. 
 
 

4. RESULTS AND EVALUATION 

The proposed approach was tested using 0.1m GSD 
panchromatic aerial orthoimagery covering rural and suburban 
areas. The Authoritative Topographic Cartographic Information 
System of Germany (ATKIS), which nominally corresponds to 
a mapping scale of 1:25,000, was used as the source of external 
vector data. Roads are modelled as linear objects in ATKIS. 
Tests were conducted on 10 roundabouts. Sample results that 
highlight the capabilities of the proposed approach are shown in 
Fig. 12, where is can be seen that the method can deal with a 
variety of disturbances inside and outside the central island. 
Also, most of the roundabout borders were captured correctly. 
However, in areas where the curvature of the outline was too 
high, as is the case in the top-left example (lower border) and 
top-right image (right border), roundabout borders were 
extracted with some deviation.  
In order to evaluate the performance of the approach, the 
extracted roundabout areas were compared to the manually 
plotted roundabouts used as reference data. The comparison 
was carried out by matching the extracted road borders 
resulting from the connection of the roundabout to its associated 
road arms to the reference data using the so-called buffer 
method (Heipke et al. 1998). Although the buffer width can be 
defined using the required accuracy of ATKIS, which for a road 
object is defined as 3m, it was decided to set the buffer width 
within the range of 0.5 m to 3 m, i.e. 5 pixels to 30 pixels, in 
concert with the image resolution of 0.1 m. This allowed 
assessment of the relevance of the approach for practical 
applications that demand varying degrees of accuracy.   
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An extracted road border is assumed to be correct if the 
maximum distance between the extracted road border and its 
corresponding reference does not exceed the buffer width. 
 

              
                           (a)                                      (b)        

          
                           (c)                                    (d) 

 

Figure 11. Capture of roundabout outline: (a) initial snakes in 
black and road arms in white, (b) and (c) evolving curves, and 
(d) reconstructed roundabout. 
 
 

     

   

 
Figure 12. Sample roundabout extraction results for scenes with 
varying degrees of complexity including disturbances. 
 
A smaller value of the buffer width can be chosen for an 
application that requires more accurate extraction results. A 
reference road border is assumed to be matched if the maximum 
deviation from the extracted object is within the buffer width. 

Based on these assumptions, three quality measures were 
adopted, the first being completeness, which is the ratio of the 
number of matched reference road borders to the number of 
reference objects. The second is correctness, which is the ratio 
of the number of correctly extracted road borders to the number 
of extracted objects, while the third is geometric accuracy, 
which is expressed by the average distance between the 
correctly extracted road border and the corresponding reference 
border, expressed as a Root Mean Square (RMS) value falling 
within the range of [0, buffer width]. 
 
Road border extraction results computed with different buffer 
width values are shown in Table 1. The completeness of the 
road border extraction increased as the buffer width value 
increased from 0.5m to 3m, implying that the results are more 
complete for higher buffer width values. The geometric 
accuracy increase is inversely proportional to buffer width so 
that results obtained with a value of 0.5m are more accurate 
than those obtained with a larger buffer width. For the buffer 
width value 0.5 m, the completeness is rather low. The reason is 
that a slight deviation of the extraction results from the true 
boundaries exceeding the buffer width frequently occurs due to 
disturbances and sometimes also due to road markings. 
 

Buffer width (m) 0.5 1 2 3 
Number of road borders 41 41 41 41 

Completeness 53% 62% 74% 85% 
Geometric accuracy (m) 0.30 0.38 0.50 0.58 

 

               Table 1. Evaluation results for road borders. 
 
 

As seen in Table 2, a favourable evaluation result was achieved 
in the extraction of central islands, which proved the robustness 
of the proposed method. Central islands of roundabouts were 
extracted with high values for completeness and correctness for 
the buffer width of 0.5m, implying the effectiveness of the 
proposed hybrid evolution strategy. For the buffer width value 
1m, all of central islands were extracted correctly.  
 

 
Buffer width (m) 0.5 1 

Number of central islands 10 10 
Completeness 90% 100% 
Correctness 90% 100% 

Geometric accuracy (m) 0.26 0.35 
 

            Table 2. Evaluation results for central islands. 
 

5. CONCLUDING REMARKS 

A new snake-based approach to automatic extraction of road 
roundabouts has been described and analysed. Under the 
approach, the snake’s external force field is modified based on 
the shape of the central island to delineate the roundabout 
border. The modified snake force field can overcome various 
disturbances inside and outside the central island. It was shown 
that the use of prior-knowledge derived from an existing 
topographic database can considerably enhance the extraction 
performance. Furthermore, a level set approach with a hybrid 
evolution strategy was proposed to extract central islands. This 
produced good results in all 10 test cases, as central islands 
were extracted correctly for an assigned buffer width of 1m. 
Nevertheless, partial occlusion of the central island border by 
large trees and shadowing cannot be overcome at this stage 
(Fig. 13). There are several possibilities to further enhance the 
results obtained so far and to be able to deal with more complex 
scenes. The incorporation of high-level prior knowledge about 
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the shape of central islands within the level set framework can 
potentially provide a solution to these problems. 
 

                               
 
Figure 13. Example of a central island that cannot be extracted 
due to heavy occlusions caused by trees and shadows. 
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ABSTRACT: 
 
In this paper, a road extraction approach for suburban areas from high resolution CIR images is presented. The approach is region-
based: the image is first segmented using the normalized cuts algorithm, then the initial segments are grouped to form larger 
segments, and road parts are extracted from these segments. Roads in the image are often covered by several extracted road parts 
with gaps between them. In order to combine these road parts, neighbouring road parts are connected to a road subgraph if there is 
evidence that they belong to the same road, such as similar direction and smooth continuation. This process allows several branches 
in the subgraph which is why another step follows to evaluate the subgraphs and divide them at gaps which show weak connections 
after gap weights are determined. A digital surface model, if available, is used in the grouping and road extraction step in order to 
prevent high regions from being extracted as roads. The results of the road extraction with and without the digital surface model are 
compared in order to show how the extraction is improved by the surface model. It also shows what can still be expected from the 
extraction if no digital surface model is available. 
 
 

1. INTRODUCTION 

Roads are a very important part of the infrastructure, especially 
in urban areas. Road data are used in many applications, for 
example car navigation systems. For these applications it is 
important that the road data are up-to-date and correct. As the 
road network is subject to change, especially in suburban areas, 
the road databases have to be updated frequently. This is often 
done manually with the help of aerial or satellite images. In 
order to reduce the costs and the time required for map 
updating, it is desirable to use automatic procedures for the 
extraction of roads from these images. Today, roads are to a 
large degree still extracted manually, especially in urban areas, 
because of the relatively high complexity of urban 
environments compared to open landscapes. For open 
landscapes, road extraction algorithms that are reasonably 
reliable already exist, e.g. (Zhang, 2004). This was confirmed 
by the EuroSDR test on road extraction (Mayer et al., 2006). In 
this test, several state-of-the-art methods for road extraction 
were compared, using imagery with a resolution of 0.5-1.0 m. 
The results were reasonably good in rural scenes of medium 
complexity, but the algorithms did not perform well in urban or 
suburban areas.  
 
There are many different approaches for road extraction from 
optical imagery, and in recent years the number of those that 
deal with urban areas has increased. Road extraction algorithms 
can be classified into line-based approaches and region-based 
approaches. Line-based approaches, which model roads as one-
dimensional linear objects, are mainly used in open landscapes 
with images of middle to low resolution, and they are not 
suitable for urban areas. An approach for urban areas that 
extracts middle lines and edges of roads and groups them to 
form road lanes using aerial images of very high resolution (0.1 
m) is described by Hinz (2004). In most other approaches 
regions are extracted from images with a resolution of 

approximately 1 m. One example is (Zhang and Couloigner, 
2006), where a colour image is classified and the regions 
classified as roads are refined in order to separate roads from 
false positives such as parking lots. Another example for a 
region-based approach is (Hu et al., 2007), where footprints of 
roads are extracted based on shape, and the roads between the 
footprints are tracked. The high complexity of urban and 
suburban areas makes road extraction from greyscale aerial 
images without further information difficult because many 
different structures in urban areas have an appearance similar to 
that of roads. Therefore, most approaches use additional 
information, for example colour (Zhang and Couloigner, 2006; 
Doucette et al. 2004), Digital Surface Models (DSMs) (Hinz, 
2004) or both (Hu et al., 2004). Information about the position 
of roads from an existing road database can also be used, e.g. 
(Mena and Malpica, 2005). Prior information about the road 
network is another possible source of information. Price (1999) 
assumes that the road network forms a regular grid. This is also 
done by Youn and Bethel (2004), though they use less strict 
requirements for the grids. 
 
In this paper, a region-based approach for road extraction from 
aerial colour images with a resolution of 0.1 m is presented. 
Optionally, a DSM can be used as an additional source of 
information. Apart from the DSM, our approach does not 
require other sources of information such as an existing 
database, as used in (Mena and Malpica, 2005). Since we work 
in suburban areas, the approach does not rely on particular 
properties of roads like road markings, as used in (Hinz, 2004) 
or a regular road grid, as used in (Price, 1999), and all roads 
should be extracted, not only major roads. In the approach, an 
image is first segmented and then road parts are extracted from 
the segments. These road parts are assembled into road 
subgraphs. In this way, there is no need to assume that a whole 
road can be extracted undisturbed. The subgraphs can contain 
different branches which represent different hypotheses for the 
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course of the roads. In order to find the most probable course of 
the road, the subgraphs are evaluated using relations between 
the road parts and linear programming. If a DSM is available, it 
can be used in the grouping and road part extraction processes. 
DSMs have been used in the past for road extraction, but their 
influence was limited due to the relatively poor performance of 
standard image matching techniques (Zhang, 2004). We think 
that with the advent of new dense image matching techniques, 
e.g. (Pierrot-Deseilligny and Paparoditis, 2006; Hirschmüller, 
2008), the importance of incorporating 3D information into the 
road extraction process will increase. In this paper, the 
extraction results that were achieved with and without the DSM 
are compared in order to demonstrate the respective potentials 
for road extraction. The main goal of this paper is to present the 
new method for road subgraph evaluation and to assess the 
influence of the DSM on the road extraction results. The road 
extraction approach is described in Section 2. The segmentation 
and road part extraction, which are explained in detail in (Grote 
et al., 2007; Grote and Heipke, 2008), are only reviewed 
briefly. Our new method for road subgraph evaluation is 
discussed in more detail, as well as the incorporation of the 
DSM. In Section 3, results are presented with a comparison 
between the results achieved with and without the DSM. 
Section 4 gives conclusions and directions for future work. 
 
 

2. APPROACH 

2.1 Overview 

Our goal is the extraction of roads from high resolution aerial 
images in suburban areas. We use colour infrared (CIR) images 
with a ground resolution of approximately 10 cm. Optionally, a 
DSM, e.g. generated by image matching, can also be used. The 
approach consists of three steps, namely segmentation, road 
part extraction and subgraph generation. In the segmentation 
step, the image is first divided into many small segments, which 
are then grouped into larger segments having meaningful 
shapes. Potential road parts are extracted from the grouped 
segments using shape criteria. If a DSM is available, height can 
be used as additional criterion in the grouping and road part 
extraction steps. The road parts are then assembled to road 
subgraphs (Fig. 1) if they potentially belong to the same road; 
junctions are not considered in this step. Several branches are 
allowed to be present in one subgraph. In the next step, these 
ambiguities are resolved by optimising the graph in a way that 
finds the best possibility for the course of the road without 
branches.  
 

Figure 1. Road subgraphs. Dashed lines: real road network; 
grey rectangles: extracted road parts; continuous 
lines: edges of road subgraphs. The blue lines 
delineate two examples for distinct road subgraphs.  

 
In Fig. 1, the term road subgraph and its components are 
explained. The term subgraph is used in order to indicate that it 
does not represent a complete, interconnected road network. A 
road subgraph consists of several assembled road parts. A road 
part is a segment which is classified as a road. It can correspond 
to a whole road between two junctions or only a part of the 
road, or it can be a false positive. Each subgraph extends only 
as far as road parts can be found in a more or less straight 
continuation; in this way, each subgraph usually represents only 
one road. Each road part in a subgraph has two nodes which are 
connected via a road edge. A node can also maintain 
connections to nodes of other road parts via gap edges. These 
gap edges can be understood as hypotheses for connections 
between extracted road parts that were missed in the original 
road part extraction process. If more than one such connection 
exists at one node, the node has several branches. These 
branches correspond to conflicting hypotheses for a completion 
of the road. In order to achieve a consistent road network, these 
conflicts have to be resolved by road subgraph evaluation.  
 
2.2 Segmentation and Road Part Extraction 

The first stage of the road extraction is the segmentation of the 
image, which is carried out in two steps, namely initial 
segmentation and grouping. The goal of the initial segmentation 
is to divide the image into small regions whose borders coincide 
with the road borders as completely as possible. The normalized 
cuts algorithm (Shi and Malik, 2000) is used for this initial 
segmentation, in which connections between pixels are 
weighted according to their similarities. The similarities of 
pixel pairs are determined using colour and edge criteria. 
Details can be found in (Grote et al., 2007). 
 
The normalized cuts algorithm results in a considerable 
oversegmentation. This is necessary in order to preserve most 
road borders, but as a result, the initial segments must be 
grouped in order to obtain segments that correspond to road 
parts. Grouping is carried out iteratively using colour and edge 
criteria, this time considering the properties of the regions (as 
opposed to those of the pixels, which were used in the initial 
segmentation). Segments with irregular shapes that cover roads 
across junctions can occur in this step. Therefore, the skeletons 
of the segments are examined. If they have several long 
branches (not to be confused with the branches of subgraphs), 
the segments are split. 
 
In the next step, hypotheses for road parts are extracted from 
the grouped segments. Geometric and radiometric criteria are 
used for the extraction. The geometric criteria are elongation 
(ratio of squared perimeter to area), width constancy (ratio of 
mean width to standard deviation) and difference to average 
road width. As radiometric criteria, the NDVI (normalized 
difference vegetation index) and the standard deviation of 
colour are used. In addition, dark areas are excluded because 
shadow areas often have similar geometric properties to road 
parts. The parameters used for the experiments described in this 
paper are listed in Table 1. The elongation, width constancy, 
compliance with average road width and the NDVI are used to 
determine a quality measure for each road part hypothesis. The 
road parts are represented as regions; for the following road 
subgraph generation a representation by the centre lines and 
average widths is also used. For calculating the centre line, the 
region boundary is split into two parts at the points on the 
boundary that are farthest away from each other. Distance 
transforms are calculated for both parts, and the points where 
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both distance transforms within the road part have the same 
values make up the centre line. Further details of the road part 
extraction are explained in (Grote and Heipke, 2008). 
 
min. elongation 70  
width 3 m – 16 m 
min. width constancy 1.7 
min. intensity 40 
max. NDVI 0 
max std. deviation of colour 50 

Table 1. Parameters for road part extraction. 
 
2.3 Road Subgraph Generation and Evaluation 

In many cases, a road is not completely covered by one road 
part but by several different road parts because disturbances in 
the appearance of the road interfered with the extraction. 
Therefore, road parts that could belong to the same road are 
assembled into road subgraphs (Fig. 1) by checking if the road 
parts have neighbours to which they can be connected. The 
subgraphs are assembled iteratively, starting with the road part 
with the best quality measure from the road part extraction. The 
criteria used to decide whether two road parts belong to the 
same road are the distance between the segments, the direction 
difference and the continuation smoothness. The reference 
points for the measurement of the direction difference and the 
continuation smoothness are the intersection points between the 
centre line and the road part borders. The continuation 
smoothness is measured by calculating the direction differences 
between the directions of the road parts to the direction of their 
connection (Fig. 2). The continuation smoothness is high if both 
smoothness angles are small. However, if the distance between 
the segments is short, the continuation smoothness criterion is 
disregarded because at close distances the angles depend too 
much on the exact positions where the angles are measured. 
 

Figure 2. Continuation smoothness. 
 

Two road parts are linked if empirically determined thresholds 
for the distance, the direction difference and the continuation 
smoothness are met. The distance and the direction difference 
must be low and the continuation smoothness must be high; all 
three conditions must be fulfilled for the road parts to be linked. 
The parameters used for the experiments described in this paper 
are shown in Table 2. One road part can be attached to more 
than one other road part in the same direction, such that 
branches in the subgraphs can occur. The search for 
neighbouring road parts continues until no more road parts can 
be added. Then, the search is resumed with the road part which 
has the best quality measure among the remaining road parts 
until all road parts have been examined. 
 
max. distance 50 m 
max. direction difference 40° 
max. smoothness angle 40° 

Table 2. Parameters for road subgraph generation. 
In most cases the branches do not represent actual branches in 
the road network but rather indicate false extractions of road 
parts that are nearly parallel to the real road. Therefore, road 
subgraphs containing branches are treated as including different 
hypotheses for the course of the road. It is the goal of road 
subgraph evaluation to determine the best hypotheses, i.e. the 
hypotheses that are most likely to actually correspond to roads, 
and to discard all the other hypotheses. This goal is achieved 
via the formulation and solution of a linear programming 
problem.  
 
In linear programming a linear function (objective function) 
whose variables are subject to linear constraints is maximised or 
minimised (Dantzig, 1963). The constraints define a set of 
feasible vectors; the vector for which the constraint set is 
maximal or minimal is the optimal solution for the problem. 
Linear programming can be used when the variables of the 
linear function to be optimised are restricted by hard 
constraints, which can be described by equations or by 
inequalities. In our case the constraints are inequalities resulting 
from the condition that no node of a subgraph should be 
connected to more than one gap edge after the optimisation. 
The objective function which is to be maximised is 
 

  w1x1 + … + wnxn → max (1) 
 

where w1 … wn are weights of the gap edges that reflect the 
plausibility that the two road parts belong to the same road. The 
unknown variables are x1 … xn. There is one such unknown for 
each gap edge in the road subgraph. Each of these binary 
variables indicates whether its corresponding edge should be 
kept or discarded. A value of 1 indicates that the edge is kept; a 
value of 0 indicates that it is discarded. These values are 
determined by solving the maximisation under the constraints 
that each node i can only be associated to one gap edge:  
 
  





iEj
jx 1 . (2) 

 

Ei is the set of gap edges belonging to node i. The optimisation 
is carried out using the simplex method (Dantzig, 1963). The 
edge weights are determined using the following criteria: 
 

 Distance: a shorter distance between the two 
connected road parts gives a higher edge weight. 

 Road part quality: the sum of the quality measures of 
both road parts from the extraction. A higher value 
gives a higher edge weight. 

 Colour: a smaller difference between the mean colour 
values of both road parts gives a higher edge weight.  

 Width: a smaller width difference between both road 
parts gives a higher edge weight.  

 Continuation smoothness: smaller smoothness angles 
(cf. Section 2.2) give a higher edge weight. 

 Direction: a smaller direction difference between both 
road parts gives a higher edge weight. 

 
The weights for the different criteria are obtained after 
calculating all criteria by mapping the respective values linearly 
onto an interval between 0 and 1. For example, the maximum 
possible distance between two connected road parts is 
equivalent to a distance weight of 0. The other weights are 
obtained accordingly. All weights are multiplied to obtain the 
total weight for one edge. The edge weights that belong to the 
same subgraph are normalised such that their sum equals 1. 
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After solving the linear programming problem, gap edges 
whose corresponding unknowns were determined to be 0 are 
discarded. This results in consistent road subgraphs that 
correspond to roads, which are considered to be the results of 
road extraction.  However, all road parts are kept at this stage, 
so the falsely extracted road parts must be removed during the 
road network formation, which is still under development.  
 
2.4 Including the Digital Surface Model 

The road part extraction can produce false positives among 
segments having properties that are similar to road segments. 
False positives can disturb the later steps of linking the road 
parts and forming a road network. To avoid this, they have to be 
sorted out later when the network is formed or they have to be 
prevented from being extracted. The majority of the falsely 
extracted road parts are buildings, which can lead to subgraphs 
consisting only of false positives because buildings are often 
arranged in rows. As the most distinctive property of buildings 
that distinguishes them from roads is their height, a DSM can 
provide valuable additional information. 
 
The DSM is employed in the grouping and road part extraction 
steps. It is not used for the initial segmentation which operates 
at pixel level because DSM inaccuracies in shadows and 
alignment errors caused by the fact that orthophotos are 
generated using a Digital Terrain Model (DTM) would affect 
the results adversely. In the grouping step the DSM is used to 
prevent segments with different heights from being merged. For 
this purpose, the differences of the mean heights are added to 
the grouping criteria. If the difference is larger than a threshold, 
the segments are not merged. The threshold is empirically 
determined; in our examples it is set to 1.5 m. This prevents 
building segments from being merged with road segments but 
allows for smaller height variations in the background. 
 
For the road part extraction the DSM is used to prevent high 
objects from being extracted as roads. For this purpose, a 
normalised DSM (nDSM) representing objects above ground is 
determined. A coarse Digital Terrain Model (DTM) is 
generated from the DSM by morphological grey value opening. 
The DTM is then subtracted from the DSM, which yields the 
nDSM (Weidner and Förstner, 1995). The mean heights of the 
segments obtained from the nDSM are compared to a threshold. 
It was found that a threshold of about 1 m reliably distinguishes 
building parts and road parts. This threshold is used as 
additional criterion in the road part extraction. 
 
 

3. RESULTS 

The approach was tested on three subsets of an image showing 
a suburban scene from Grangemouth, Scotland. The image is a 
CIR orthoimage with a resolution of 10 cm. The data set also 
contains a DSM that was generated by image matching at a 
resolution of 20 cm in position and 10 cm in elevation. Elevated 
objects are represented well in the DSM, though unfortunately 
it is not known which method was used for its generation. For 
the three subsets, results of the road part extraction and road 
subgraph generation are presented, first obtained from the 
image data alone, and then from additionally using the DSM.  
 

3.1 Results without DSM 

Segmentation, grouping and road part extraction were carried 
out as described in Section 2.2 and (Grote et al., 2007; Grote 
and Heipke, 2008). Figures 3, 4 and 5 show the results of the 
road part extraction for the image subsets 1, 2 and 3, 
respectively. Whereas in subsets 1 and 2 most parts of the road 
network were extracted, significant parts of the road network 
are missed in subset 3. Each subset contains false positives, 
which are mainly found on buildings because buildings have 
similar radiometric and geometric properties to road parts. The 
results of the road part extraction were compared to manually 
extracted road regions. The manually extracted regions include 
areas occluded by shadows or trees, but exclude pavements. 
The completeness and correctness of the road parts computed 
according to (Heipke et al., 1997) are displayed in Table 3. 
They were determined on a per-pixel level and thus refer to the 
extracted areas. Table 3 shows that about two thirds of the road 
area could be detected, but almost half of the area classified as 
road area consists of false positives. 
 

 Completeness Correctness 
Subset 1 66 % 57 % 
Subset 2 89 % 59 % 
Subset 3 31 % 49 % 
Total 62 % 55 % 

 

Table 3. Evaluation of road part extraction without a DSM. 
 

 

Figure 3. Road parts extracted in subset 1 (yellow).  
 

 

Figure 4. Road parts extracted in subset 2 (yellow). 
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Figure 5. Road parts extracted in subset 3 (yellow). 
 
The road parts are then assembled into road subgraphs as is 
shown in Fig. 6 for subset 1. There are three subgraphs which 
contain different hypotheses; these are resolved using linear 
programming, as described in Section 2.3. In Fig. 7, only these 
three subgraphs are shown with the edges that are removed 
displayed in red. The results show that the optimisation favours 
connections between road parts that are similar in colour and 
width and maintain a more or less straight continuation. 
 

 

Figure 6. Road subgraphs (without DSM) for subset 1. 
Different colours represent different road subgraphs. 

 
 

 

Figure 7. Road subgraph evaluation (without DSM) for 
subset 1. Discarded gap edges are displayed in red. 

 
3.2 Results with DSM 

The grouping and the road part extraction were repeated using 
the DSM as additional information, as described in Section 2.4. 
Figures 8, 9 and 10 show the results of the road part extraction 
with the DSM for the image subsets 1, 2 and 3, respectively. 
Both the completeness and the correctness values (Table 4) 
have notably improved compared to the results without the 
DSM. The highest improvement in completeness is observed in 
subset 3; almost all roads are now covered with road parts for 
the greater part of their area. The highest improvement in 
correctness is observed in subset 1 where several buildings were 
extracted without the DSM. 
 

 Completeness Correctness 
Subset 1 73 % 73 % 
Subset 2 91 % 65 % 
Subset 3 45 % 57 % 
Total 70 % 65 % 

 

Table 4. Evaluation of road part extraction with a DSM. 
 
The subgraph generation and evaluation is conducted in the 
same way as before. The subgraphs for subset 1 can be seen in 
Fig. 11. Now there is only one subgraph with several branches, 
because the use of the DSM prevented some buildings from 
being extracted. The result of the evaluation of the remaining 
subgraph with branches is shown in Fig. 12. 
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Figure 8. Road parts extracted in subset 1 with DSM ( yellow). 
 

 

Figure 9. Road parts extracted in subset 2 with DSM (yellow). 
 

 

Figure 10. Road parts extracted in subset 3 with DSM (yellow). 
 

Compared to the visual impression of the extracted roads, the 
completeness and correctness values are relatively low. The 
computed correctness suffers from leakage at the borders of the 
road parts and from the fact that pavements, which are often 
extracted as roads, are not included in the reference data. The 
computed completeness would also be increased by 
constructing road parts corresponding to the gap edges that 
were accepted in subgraph evaluation. 

 

Figure 11. Road subgraphs (with DSM), subset 1. Different 
colours represent different road subgraphs. 

 

 

Figure 12. Road subgraph evaluation (with DSM), subset 1. 
 
 

4. CONCLUSIONS 

In this paper, an approach for the extraction of roads in 
suburban areas was presented, with the focus on a comparison 
between the extraction results achieved for image data alone 
and the results achieved for using a DSM as an additional 
information source. Our results show that the approach is 
suitable for the extraction of roads in suburban areas. The 
majority of roads can be detected even without a DSM, though 
there is a relatively high number of false positives, mostly 
buildings. Using a DSM improves both the completeness and 
the correctness of the results, primarily because buildings can 
now be clearly separated from roads. The correctness is 
improved because buildings are not extracted as false positives. 
The completeness is improved because incorporating the DSM 
into the grouping process provides a better grouping result from 
which more road parts can be extracted. Without a DSM, there 
are more subgraphs containing several branches, so that the 
importance of the subgraph evaluation is higher. The potential 
to find the real course of the road based on an optimisation of 
the interrelations between the road parts is shown in Figures 6 
and 7. Subgraph evaluation can thus compensate for the lack of 
height information in the road part extraction stage. However, 
the improvement caused by using the height information in the 
grouping phase cannot be compensated. Road parts that remain 
undetected due to a poor performance of grouping based on 
image data alone cannot be detected at a later stage. Using a 
DSM thus certainly improves the quality of the results. This can 
be seen in particular for subset 3 (Fig. 5 vs. Fig. 10). 
 
The road extraction process can still be improved in several 
ways. The parameters used for grouping, road part extraction 
and road subgraph generation could be learned from training 
samples, which probably would improve stability in different 
settings. The road extraction can also be improved by 
incorporating context objects such as trees, buildings and 
vehicles. It is planned to incorporate context objects into the 
evaluation of the gaps within the subgraphs, combined with the 
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interrelations described in this paper. Context objects can also 
be beneficial in the next steps, which include the formation of a 
road network by searching for junction hypotheses between 
road strings and removing isolated (mainly falsely extracted) 
road parts. The completeness and correctness values given in 
this paper where obtained from the single road parts. They are 
likely to improve during the network generation because the 
majority of falsely extracted road parts can be removed and the 
gaps between road parts in a string can also be counted as road. 
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ABSTRACT: 
This paper presents a generic scheme to analyze urban traffic via vehicle motion indication from airborne laser scanning (ALS) data. 
The scheme comprises two main steps performed progressively － vehicle extraction and motion status classification. The step for 
vehicle extraction is intended to detect and delineate single vehicle instances as accurate and complete as possible, while the step for 
motion status classification takes advantage of shape artefacts defined for moving vehicle model, to classify the extracted vehicle 
point sets based on parameterized boundary features, which are sufficiently good to describe the vehicle shape. To accomplish the 
tasks, a hybrid strategy integrating context-guided method with 3-d segmentation based approach is applied for vehicle extraction. 
Then, a binary classification method using Lie group based distance is adopted to determine the vehicle motion status. However, the 
vehicle velocity cannot be derived at this stage due to unknown true size of vehicle. We illustrate the vehicle motion indication 
scheme by two examples of real data and summarize the performance by accessing the results with respect to reference data 
manually acquired, through which the feasibility and high potential of airborne LiDAR for urban traffic analysis are verified. 
 
 

                                                                 
* Corresponding author. 

1. INTRODUCTION 

Transportation represents a major segment of the economic 
activities of modern societies and has been keeping increase 
worldwide which leads to adverse impact on our environment 
and society, so that the increase of transport safety and 
efficiency, as well as the reduction of air and noise pollution are 
the main task to solve in the future (Rosenbaum et al., 2008). 
The automatic extraction, characterization and monitoring of 
traffic using remote sensing platforms is an emerging field of 
research. Approaches for vehicle detection and monitoring rely 
not only on airborne video but on nearly the whole range of 
available sensors; for instance, optical aerial and satellite 
sensors, infrared cameras, SAR systems and airborne LiDAR 
(Hinz et al., 2008). The principal argument for the utilization of 
such sensors is that they complement stationary data collectors 
such as induction loops and video cameras mounted on bridges 
or traffic lights, in the sense that they deliver not only local data 
but also observe the traffic situation over a larger region of the 
road network. Finally, the measurements derived from the 
various sensors could be fused through the assimilation of 
traffic flow models. The broad variety of approaches can be 
found, for instance, in compilations by  Stilla et al., (2005) and  
Hinz et al., (2006). 
 
Nowadays, airborne optical cameras are widely in use for these 
tasks(Reinartz et al., 2006). Yet satellite sensors have also 
entered into the resolution range (0.5-2m) required for vehicle 
extraction. Sub-metric resolution is even available for SAR data 
since the successful launch of TerraSAR-X. The big advantage 
of these sensors is the spatial coverage. Thanks to their 
relatively short acquisition time and long revisit period, satellite 
systems can mainly contribute to the collection of statistical 
traffic data for validating specific traffic models. Typical 
approaches for vehicle detection in optical satellite images are 
described by Jin and Davis, (2007) and Sharma et al., (2006), 
and in spaceborne SAR images by Meyer et al., (2006) and 
Runge et al., (2007). For monitoring major public events, 
mobile and flexible systems which are able to gather data about 
traffic density and average speed are desirable. Systems based 

on medium or large format cameras mounted on airborne 
platforms meet the demands of flexibility and mobility. With 
them, large areas can be covered (up to several km2 per frame) 
while keeping the spatial resolution high enough to image 
sufficient detail. A variety of approaches for automatic tracking 
and velocity calculation from airborne cameras have been 
developed over the last few decades. These approaches make 
use of substructures of vehicles such as the roof and windscreen, 
for matching a wire-frame model to the image data (Zhao and 
Nevatia, 2003).   
 
Despite that LiDAR has a clear edge over optical imagery in 
terms of operational conditions, there have been so far few 
works conducted in relation to traffic analysis from laser 
scanners. On the one hand it is an active sensor that can work 
day and night; on the other hand it is range senor that can 
capture 3d explicit description of scene and penetrate 
volumetric occlusions to some extent. Toth and Grejner-
Brzezinska, (2006) has presented an integrated airborne system 
of digital camera and LiDAR for road corridor mapping and 
dynamical information acquisition. They addressed a 
comprehensive working chain for near real-time extracting 
vehicles motion based on fusing the images with LiDAR data. 
Another example of applying ALS data for traffic-related 
analysis can be found in Yarlagadda et al., (2008), where the 
vehicle category is determined by 3-d shape-based 
classification. 
 
In this paper, a generic scheme to discover the vehicle motion 
solely from airborne LiDAR data is presented. It is based on 
two-step strategy, which firstly extracts single vehicles with 
contextual model of traffic objects and 3d-segmentation based 
classification (3-d object-based classification), and secondly 
classifies vehicle entities in view of motion status based on 
shape analysis. 

2. VEHICLE EXTRACTION 

In this step, we need to at first extract various vehicle categories 
as complete and accurate as possible, but not considering the 
difference among them in terms of dynamical status. To 
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accomplish this task, we proposed a hybrid strategy that 
integrates context-guided progressive method with 3-d 
segmentation based classification. Experiments demonstrated 
that the assimilation of these two approaches (Fig. 1) can make 
our vehicle extraction from LiDAR data of urban areas more 
competent and robust, even against complex scenes. 

 
Figure 1. Integrated scheme for vehicle extraction. 
 
2.1 Context-guided extraction 

This extraction strategy comprises knowledge about how and 
when certain parts of the vehicle and context model of traffic 
related objects in urban areas are optimally exploited, thereby 
forming the basic control mechanism of the extraction process. 
In contrast to other common approaches dealing with LiDAR 
data analysis, it neither uses the reflected intensity for 
extraction nor combines multiple data sources acquired 
simultaneously. The philosophy is to exploit geometric 
information of ALS data as much as possible primarily based 
on such context-relation that vehicles are generally placed upon 
the ground surface. Moreover, the approach on the one side can 
be viewed as a processing strategy progressively reducing 
“region of interest”. It is subdivided into four steps: ground 
level separation, geo-tiling and filling, vehicle-top detection and 
selection, segmentation, which are respectively elaborated in 
detail in Yao et al., (2008)a. An exemplary result on one co-
registered dataset is shown in Fig.2. 

 
Figure 2. Vehicle extraction result as white outlined contours 
for test data I using context-guilded method. 

2.2 3D segmentation based classification 

Since many vehicles in modern cities might travel on the 
elevated roads such as flyover or bridge, the context relation 
abided by the method in section 2.1 does not always hold. 

Therefore, we introduced a 3D object-based classification 
strategy for extracting semantic objects directly from LiDAR 
point cloud of urban areas. It could either extract two object 
classes – vehicle and elevated road simultaneously or only 
elevated road, where vehicle can further be detected considering 
elevated road here as ground. The ALS data is firstly subjected 
to the segmentation process using nonparametric clustering tool 
– mean shift (MS). The obtained results are usually not able to 
give a significative description of distinct natural and man-made 
objects in complex scenes, even though MS does a genuine 
clustering directly on 3D point cloud to discover various 
geometric modes in it. Hence, the initial resulted point segments 
have to be handled under the global optimization criterions to 
generate more consistent subsets of laser data. For it, a modified 
normalized-cuts (Ncuts) is applied with the sense of perceptual 
grouping. Finally, based on derived features of spatially 
separated point clusters that potentially correspond to semantic 
object entities, classification is performed to evaluate them to 
extract the flyover and vehicle (Yao et al., 2009). Applying this 
approach to a one-path dataset yielded Fig.3. 

 
Figure 3. Vehicle (green) and flyover extraction results for test 
data II using 3D segentation based classification. 
 

3. VEHICLE MOTION INDICATION 

For extracted vehicles resulted from last step, the parameterized 
model for point sets of single vehicles can then be produced by 
shape analysis. From the parameterized features of vehicle 
shape, the across-track vehicle motion (-component) is able to 
be indicated unambiguously based on the moving vehicle model 
in ALS data, whereas the along track motion cannot be implied 
without prior knowledge about individual vehicle sizes. In this 
section, the vehicle motion status is attempted to be inferred up 
to the across-track direction without derive the velocity.   
 
3.1 Vehicle Parametrization 

Generally, the laser data provide us a straightforward 3D 
parameterization, as vehicle forms change more vertically than 
horizontally. To refine the 3D vehicle envelope model (Yao et 
al., 2008b), however, is difficult, because the laser point density 
acquired under common configurations is usually not sufficient 
to model the vertical profile of a vehicle. The situation is even 
more degraded by motion artifacts, because the large relative 
velocity of the sensor to object results in fewer laser points, 
making vehicle appears like a blob. Consequently, it is not easy 
to analytically model the vertical vehicle profiles from ALS 
data, which would be a simple task for much denser terrestrial 
laser data. 
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Yarlagadda et al., (2008) has applied a spoke model to vehicle 
database in a parking lot scanned by airborne LiDAR for 3D 
classification task of vehicle category. The point cloud of single 
vehicle is fitted with multiple connected planes being similar to 
spokes, which are used to describe the vehicle shape via two 
controlling parameters for each spoke, namely the orientation 
and radius of it. For the purpose of our task, it is desirable that 
the original vehicle form and motion artifacts are able to be 
captured by a unified geometric model. Due to flexibility and 
efficiency, the spoke model for vehicle point sets is selected 
here as general framework for vehicle shape parametrization. 
Being subject to minor modifications towards the analysis 
objective, the spoke model could consistently encode geometric 
information used for robust classification of vehicle motion.  
 
Based on the moving vehicle model, which is focused on the 2-
d deformation of vehicle form, the 3D spoke model of vehicles 
can be projected onto 2-d plane to deriving the shape 
parameters, thereby avoiding unnecessary complexities. Instead, 
the angle of shear and radius of projected 2-d point sets have to 
be estimated as controlling parameters of modified spoke model 
for vehicle parametrization. Due to the limited point sampling 
rate of ALS data, the number of spokes in the model is flexible 
to be determined depending on the point density or vehicle 
category, despite that the vehicles in our test data are frequently 
modeled with only one spoke. 
 
To obtain the geometric features of extracted vehicles, the 
shape analysis is to be performed on the projected point sets of 
the spoke model. The whole procedure mainly consists of two 
steps: boundary tracking and parallelogram fitting. 
 
A modified convex-hull algorithm (Jarvis, 1977) is used to 
determine the boundary of a set of points, namely the spoke 
model of extracted vehicles. The modification is to constrain 
the searching space of a convex hull formation to a 
neighborhood. The study showed that the approach can yield 
satisfactory results if the point distribution is consistent 
throughout the dataset. Such condition could be fulfilled, as 
only one-path ALS data are considered for moving object. The 
boundary tracing method for a point set B using a modified 
convex hull analysis starts also with a randomly selected 
boundary point P. Then, we use the convex hull algorithm to 
find the next boundary point kP within the neighborhood of P, 

which is defined as rectangle with two dimensions 
corresponding to the point spacing in along and across-track 
directions of ALS data. Finally, the approach will proceed to 
the newly selected boundary point and repeat the step 
mentioned above until the point P is selected as kP  again, as 

depicted in the left column of Fig.4. 
 
Since the sampling irregularity and randomness are generally 
assumed to be present in the LiDAR data, the traced boundary 
cannot be directly used as shape description for single vehicle 
instances, based on which the shape analysis is performed to 
parameterize the vehicle point sets. Consequently, a boundary 
regularization process aided by analytic fitting operations is to 
be introduced for tackling these problems. It is noticed that 
most vehicles have mutually parallel directions. We can find 
these directions from the boundary points and fit parametric 
lines. 
The first step in regularization is to extract the points that lie on 
identical line segments. This is done by sequentially following 
the boundary points and locating positions where the slopes of 
two consecutive edges are significantly different. Points on 

these edges are grouped to one line segment. Therefore, a set of 
line segments  1 2,  ,  ...,  , 4nl l l n  from which four longest line 

segment  1 2 3 4,  ,  ,  L L L L are selected. Each of the selected line 

segments is modeled by equation 1 0i iA x B y   . Based on the 

slope i i iM A B  , line segments are sorted into different groups, 

each of which contains line segments being parallel within a 
given tolerance. As we know from the defined vehicle models 
(Yao et al., 2008b), the vehicle point sets generally appear as a 
parallelogram and have only two groups of line segments, i.e. 
vertical and horizontal. 
 
The next step is to determine the least squares fitting to these 
line segments, with the constraints that the lines segments are 
parallel to each other within one group, namely parallelogram 
fitting. The solution consists of sets of parameters required to 
describe four line segments, which are formed as following line 
equations:  

1 0i iA x B y           i =1,2,3,4;  j = j(i) =1,2,3,… im  

with the condition: 1 3

2 4

M M
M M




 1L ( 2L ) and 3L ( 4L ) are 

opposite sides. 
 
where im is the number of points on the line segment i. 
However, there are no specific constraints on the line segments 
belonging to different groups.  
 
Once the spoke model of vehicle point sets is constructed and 
parameterized (Fig.4, right column), two controlling parameters 
can be derived, which measure the accordance of 2-d point sets 
to parallelogram (non-rectangularity) and dimension scale, 
respectively. The angle of shear SA of parameterized vehicle 

point set: 

2 1

1 2

arctan
1SA

M M
M M


 

     
, 

The extent E of parameterized vehicle point set: 

1 2 sin SAE L L     

where 2M , 1M are slopes of line segments belonging to two 

groups respectively and indicates the length of corresponding 

line segment. 

2L

1L

SA

Figure 4. Two examples for vehicle parametrization: boundary 
tracing, shape regulation (parallelogram fitting). Top row: 
moving vehicle; bottom row: vehicle of ambiguous movement 
with abnormal laser reflections. Green points marks the borders 
of extracted vehicle, red lines indicate the non-parallel sides of 
a fitted vehicle shape. 
 
Two basic cases have to be distinguished in view of vehicle 
movement, based on the geometric features derived above for 
each extracted vehicle. However, they occasionally emerge 
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other than as parallelogram (Fig.4, bottom row), but e.g. 
trapezoid, common quadrilaterals, etc, due to unstable sampling 
characteristics of LiDAR or clutter objects in urban areas.  It is 
difficult to decide whether it is actually a moving vehicle part 
or a point set of stationary vehicle with missing parts. Generally, 
these vehicle point sets confuse the shape analysis and deliverer 
only ambiguous geometric features that cannot be adopted for 
robust classification. Therefore, this category of vehicle point 
sets have to be identified and then excluded from candidates 
delivered to movement classification, which means that they 
could be only attributed to uncertain motion status at the 
moment. Those point sets are also undergone the same shape 
analysis process and can be found when the parallelogram 
fitting fails.  
 
3.2 Movement classification  

As indicated in section 3.1, the point sets of extracted vehicle 
can generally be denoted by spoke model with two parameters, 
whose configuration is formulated as  

1

 .

 . 

k

U

X

U

 
 
   
  
 

,  
 i
SA

i
i

U
E
 

  
 

 

where k denotes the number of spokes in the model. As inspired 
by the works of Fletcher et al., (2003) and Yarlagadda et al., 
(2008), the 3D vehicle shape variability is nonlinear and 
represented as a transformation space. Thus the similarity 
between vehicle instances can be measured by group distance 
metric. It has been also confirmed that Lie group PCA can 
better describe the variability of data that is inherently nonlinear 
and statistics on linear models may benefit from the addition of 
nonlinear information. Since our task is intended to classify the 
vehicle motion based on the shape features of vehicle point sets, 
the classification framework for distinguishing generic vehicle 
category can be easily adapted to motion analysis. 
 
Consequently, a new vehicle configuration Y can be obtained 
by a transformation of X written in matrix form: Y=T(X) where 

1   .   0

 .     .    .

 0    .   k

M
T

M

 
   
 
 

, 
0

0
i

i ai

R
M

e
 

  
 

, iR denotes the 2-d 

rotation acting on the angle of shear SA . aie denotes the scale 

acting on the extent E. By varying T, different vehicle shape 
(motion status) can be represented as transformations of X. 
based on elaborations in Rossmann (2002), iM  is a Cartesian 

product of the scale and angle value groups   SO(2), which 
are the Lie group of 1-d real value and the Lie group of 2-d 
rotation, respectively. Since the Cartesian product of Lie group 
elements is a Lie group and T is the Cartesian product of 
transformation matrices M acting on the individual spokes, T 
forms a Lie group. The group T is a transformation group that 
acts on shape parameters M. However, any vehicle shape X may 
be represented in T as the transformation of a fixed identity 
atom. 
 
A group is defined as a set of elements together with a binary 
operation (multiplication) satisfying the closure, associative, 
identity and the inverse axioms. A Lie group G is a group 
defined on differentiable manifold. The tangent space of group 

G at the identity e, eT , is called the Lie algebra g. The 

exponential map exp is a mapping from Lie algebra elements to 
Lie group elements. The inverse of the exponential map is 
called logarithmic map log. The Lie algebra element of T is 
obtained by performing component-wise log operation on each 
of the iM : 

 
1log( ) . 0

log( ) . . .

0 . log( )k

M
T

M

 
   
 
 

 (1) 

where
1 0 0 1

log( )
0 1 1 0i i iM  

   
    

   
. Equation (1) expresses 

the Lie algebra element of an individual spoke in terms of the 
generator matrices for scaling and 2-d rotation factors. 
 
The intrinsic mean   of a set of transformation matrices 1T , 

2T , …, nT of vehicle spoke models is defined as 

 2
1 2

1

arg min ( , )
n

k

d T T


   (2) 

where ( , )d   denotes Riemannian distance on G, and  
1

1 2 1 2( , ) log( )d T T T T where  is the Frobenius norm of the 

resulting algebra elements. The 1-parameter Lie algebra 
element of the spoke model of vehicle point sets is given by 

 

1
( ) . 0

( ) . . .

0 . ( )
n

v

v

v

A t

A t
A t

 
 

  
 
 

 (3) 

where ( ) log( )
iv iA t t M , denoting that the Lie algebra element 

is defined at a fixed ( , )i i  for each spoke, which represents 

the tangent to a geodesic curve parameterized by t. The 
parameter t in (3) sweeps out a 1-parameter sub-group, ( )vH t of 

the Lie group G of spoke transformations. For any g G , the 

distance between g and ( )vH t is defined as 

  ( , ) min ( ,exp ( ) ),   v vd g H d g A t t   (4) 

Analogous to the principle components of a vector space, there 
exist 1-parameter subgroups called the principle geodesic 
curves (Fletcher et al., 2003) which describe the essential 
variability of the data points lying on the manifold. The first 
principle geodesic curve for elements of a Lie group G is 
defined as the 1-parameter subgroup (1) ( )

v
H t , where 

 (1) 2 1

1

arg min ( , )
n

i v
i

v d g H



   (5) 

Let ,1ip be the projection of 1
ig on (1)v

H , and 

define (1) 1 1
,1i i ig p g  . The higher k-th principle geodesic curve 

can be determined recursively based on (5). 
 
The motion analysis can then be formulated as a binary 
classification problem using Lie distance metrics. The input to 
the Lie distance classifier comprises a set of labeled samples 

jT from two categories of vehicle status jC - moving vehicles 

and stationary ones. Yn denotes the number of training samples 

for each category.  The intrinsic mean j and the principal 

geodesics ( )nv
H  are computed for each vehicle class jC using 
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the samples ,  1m
j j YS S m n   . Once the principal geodesics are 

available for each jC , the classification of an unlabeled sample 

x can be performed by finding the category with the closest first 
principal geodesics to x. The corresponding motion status of a 
vehicle is found by  

 (1)

1

,
arg min log( ) ,    {1,2}

j v
j H x j    (6) 

Generally, it is claimed that the classification of vehicle status 
can successfully run based solely on the first principal 
geodesics of a movement category. Although there are 
significant variations in shape over one category, the first 
principal geodesics (1)v

H is assumed to summarize the essential 

shape features of vehicle point sets in terms of only 
distinguishing between binary motion statuses. 
 
3.3 Results 

We used the same vehicle datasets as derived in the section 2 to 
assess the proposed algorithm intended for classifying the 
motion status. Both of datasets are acquired over 

2300 400 m dense urban areas with averaged point density of 

about 1.4 pts/ 2m . The only one difference between them is that 
the first one used is co-registered from multiple strips rather 
than one-path. The classification results of vehicle motion status 
are presented in Fig.5. To access the performance of Lie group 
based classifier, minimum distance classifier was used to 
classify the same datasets based on the feature space spanned 
by vehicle parametrization. 
 
The test dataset each consists of more than 50 vehicles 
successfully detected by vehicle extraction process. A set of 5 
vehicle samples from each motion category is manually 
selected to train the classifier for vehicle motion status at first. 
It can be expected that poorly chosen training samples due to 
the strong shape variability in the category of moving vehicle 
could have a negative effect on classification performance. 
Therefore, the selection of training data for moving vehicle 
category should be carried out in such way that the fundamental 
shape information are expressed and generalized. Receiver 
Operating Characteristic (ROC) curves are generated by 
comparing classification results with reference data manually 
acquired by human interpretation and shown in Fig.6 for 
respective test datasets. 

 
(a) 

 
(b) 

Figure 5. Vehicles motion classification results for dataset I and 
II (top-view of vehicle point sets). Blue: moving; Red: 
stationary; Yellow: uncertain.  
 

 
 (a)                   (b) 

Figure 6. ROC curves for vehicle motion classification. (a) 
Dataset I; (b) Dataset II. 
 
3.4 Discussion 

Since we do not have real “ground truth” for vehicle motion 
which could be simultaneously captured along the scanning 
campaigns by an imaging sensor as described in  Toth and 
Grejner-Brzezinska, (2006),  the results are firstly assessed with 
respect to human examination abilities. Based on the context 
relations the vehicle movement could be roughly distinguished 
between moving vehicles and stationary ones. Note that the 
along-track motion cannot be resolved on principle if the true 
length is unknown, our evaluation are inherently biased by 
ambiguities introduced by the incorrect vehicle length. 
 
It can be found out from the results displayed above that most 
of detected moving vehicles appear in the heavily travelled 
roads such as flyovers and main streets of city and the vehicles 
classified as motionless are mostly found in the parking lots or 
along road margins. The yellow class indicates the vehicles of 
uncertain status which are all nearly placed very close to each 
other in a parking lot and are excluded from the motion 
classification step due to the shape irregularity. False alarms 
from motion classification by our approach usually appear for 
slowly moving vehicles which travelled not perpendicular to the 
flight direction or those moving ones that are shaped by 
anomaly sample points in ALS data due to vegetation occlusion 
or unstable reflection properties. As indicated in ROC curves, 
the Lie group based classifier outperforms the minimum 
distance classifier in both cases, as its ability to generalize 
various shapes from training data, even for worst-cases, is 
demonstrated. It can also be observed that the second test 
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dataset generally has better performance than the first one in 
terms of vehicle motion classification, which has shown that 
one-path LiDAR data could be more appropriate for our task 
than co-registered data of multiple strips, despite that the point 
density of combined dataset would be higher. Moreover, the 
superior performance may trace back to the applied extraction 
strategy of direct 3D segmentation on LiDAR point clouds 
other than 2D analysis approach.  
Once the motion status of extracted vehicles is determined, the 
velocity of moving vehicles can be inferred under the 
precondition that the true vehicle size is known. According to 
results presented here, it is easy to empirically give such 
performance summery that the vehicle motion indication as 
well as estimation from ALS data would fairly depend on 
certain factors, such as point density, distribution spacing 
between every two vehicles, relative motion direction to the 
flight direction, absolute velocity of vehicle, and vehicle size. 
The accurate impacts of single factors on motion analysis 
results have to be further obtained by quantitative analysis with 
great amount of test data  
 
Traffic analysis could quite benefit from some distinctive 
operational conditions of LiDAR sensor, in comparison to 
optical camera. It is an active sensor less weather dependent; 
for example, it can cope with haze, fog and volume-scattering 
objects to some extent, working night too. Furthermore, scene 
complexity poses an additional difficulty for the optical 
imagery: dense urban areas, long and strong shadows, 
occlusions, etc., can severely impair the vehicle extraction 
performance. 
 

4. CONCLUSION 

Overall, a progressive scheme consisting of the vehicle 
extraction step followed by motion status classification is 
presented in this work attempting to automatically characterize 
the traffic scenario in urban areas. Based on single vehicle 
instances extracted by an approach combining context 
exploitation with 3D segmentation, the binary motion status of 
them is determined by shape analysis and classification. As 
indicted by the results derived from real ALS data commonly 
used for city mapping and modeling, traffic analysis by airborne 
LiDAR offers great potential to support the short/mid-term 
acquisition of statistical traffic data for a given road network in 
urban areas in despite of higher false alarm rates. Nevertheless, 
numerous potential improvements of the schemes have to be 
developed in future, in order to deal with main obstacles to 
LiDAR traffic characterization, especially regarding velocity 
estimation, such as low point density, unknown vehicle size and 
unstable laser reflection properties of vehicle surface. 
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ABSTRACT: 
 
Video image detection systems (VIDS) provide an opportunity to analyse complex traffic scenes that are captured by stationary video 
cameras. Our work concentrates on the derivation of traffic relevant parameters from vehicle trajectories. This paper examines dif-
ferent procedures for the description of vehicle trajectories using analytical functions. Derived conical sections (circles, ellipses and 
hyperboles) as well as straight lines are particularly suitable for this task. Thus, it is possible to describe a suitable trajectory by a 
maximum of five parameters. A classification algorithm uses these parameters and takes decisions on the turning behaviour of vehi-
cles.  
A model based approach is following. The a-priori knowledge about the scene (here prejudged and verified vehicle trajectories) is 
the only required input into this system. One confines himself here to straight lines, circles, ellipses and hyperboles. Other common 
functions (such as clothoids) are discussed and the choice of the function is being justified.  
 
 

                                                                 
*   Corresponding author. 

 
1. INTRODUCTION 

1.1 Motivation 

Traffic management is based on an exact knowledge of the 
traffic situation. Therefore, traffic monitoring at roads and 
intersections is an essential prerequisite. Inductive loops and 
microwave radar systems are the most common detection and 
surveillance systems to measure traffic flow on public roads.  
 
VIDS that operate with real time image processing tech-
niques became more attractive during the last 15 years 
(Michalopoulos 1991), (Wigan 1992), (Setchell et al. 2001), 
(Kastrinaki et al. 2003). Traditional traffic parameters like 
presence, vehicle length, speed as well as time gap between 
two vehicles and vehicle classification (Wei et al. 1996) can 
be determined. In contrast to other sensors, the use of local 
cameras makes a two-dimensional observation possible and 
thus can determine new traffic parameters like congestion 
length, source-destination matrices, blockage or accidents 
and therefore support the estimation of travel times. Multi-
camera systems extend some limitations of single camera 
systems (e.g. occlusions, reliability) and enlarge the observa-
tion area (Reulke et al. 2008a).  
 
We proposed a framework that autonomously detects atypi-
cal objects, behavior or situations even in crowded and com-
plex situations (Reulke et al. 2008b). Extracted object data 
and object trajectories from multiple sensors have to be 
fused. An abstract situational description of the observed 
scene is obtained from the derived trajectories. The first step 
in describing a traffic scene is to ascertain the normal situa-
tion by statistical means. In addition, semantic interpretation 
is also derived from statistical information (such as direction 

and speed). Deviations of the inferred statistics are inter-
preted as atypical events, and therefore can be used to detect 
and prevent dangerous situations. These options allow the 
detection of sudden changes as well as atypical or threatening 
events in the scene. Atypical or threatening events are gener-
ally defined as deviations from the normal scene behavior or 
have to be defined by a rule based scheme. Red light runners 
and incident detection systems are an example for a self-
evident road traffic application.  
 
The trajectories of street vehicles are smooth and homogene-
ous over a large scale. Therefore, a mathematical description 
by elementary functions is appropriate for these trajectories. 
Thus, dramatic reductions of the bandwidths are achieved for 
a full scene transmission. The basic step to determine the 
driver intentions is to fit the trajectories to the analytical 
functions.  
 
This paper is organized as follows: After an overview of 
situation analysis and atypical event detection the approach is 
introduced. Then, an example installation is described and its 
results are presented. The mathematical fundamentals of the 
adaptation of formerly derived trajectories of turning vehicles 
by hyperbolas, ellipsoids, spheres and straight lines are 
sketched. The derived information is very comprehensive but 
compact and permits downcast to other representations like 
source destination matrices. The paper closes with a sum-
mary and an outlook. 
 
1.2 Situation Analysis and Atypical Event Detection 

Scene description and automatic atypical event detection are 
issues of increasing importance and an interesting topic in 
many scientific, technical or military fields where complex 
situations (i.e. scenes containing many objects and interac-
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tions) are observed and evaluated. A common aim is to de-
scribe the observed data and to detect atypical or threatening 
events. 
 
Other areas of situation analysis besides driver assistance 
(Reichardt 1995) may include traffic situation representation, 
surveillance applications (Beynon et al. 2003), sport video 
analysis or even customer tracking for marketing analysis  
(Leykin et al. 2005).  
 
(Kumar et al. 2005) developed a rule-based framework for 
behavior and activity detection in traffic videos obtained 
from stationary video cameras. For behavior recognition, 
interactions between two or more mobile targets as well as 
between targets and stationary objects in the environment 
have been considered. The approach is based on sets of pre-
defined behavior scenarios, which need to be analyzed in 
different contexts.  
 
(Yung et al. 2001) demonstrate a novel method for automatic 
red light runner detection. It extracts the state of the traffic 
lights and vehicle motions from video recordings.    
 
1.3 Image and Trajectory Processing 

The cameras deployed cover overlaid or adjacent observation 
areas. With it, the same road user can be observed using dif-
ferent cameras from different view positions and angles. The 
traffic objects in the image data can be detected using image 
processing methods.  
 
The image coordinates of these objects are converted to a 
common world coordinate system in order to enable the 
tracking and fusion of the detected objects of the respective 
observation area. High precision in coordinate transformation 
of the image into the object space is required to avoid mis-
identification of the same objects that were derived from 
different camera positions. Therefore, an exact calibration 
(interior orientation) as well as knowledge of the position and 
view direction (exterior orientation) of the camera is neces-
sary.  
 
Since the camera positions are given in absolute geographical 
coordinates, the detected objects are also provided in world 
coordinates.  
 
The approach is subdivided into the following steps. Firstly, 
all moving objects have to be extracted from each frame of 
the video sequences. Secondly, these traffic objects have to 
be projected onto a geo-referenced world plane. Afterwards, 
these objects are tracked and associated to trajectories. One 
can now utilize the derived information to assess comprehen-
sive traffic parameters and to characterize trajectories of 
individual traffic participants.  
 
1.4 Scenario 

The scenario has been tested at the intersection Rudower 
Chaussee / Wegedornstrasse, Berlin (Germany) by camera 
observation using three cameras mounted at a corner building 
at approximately 18 meters height. The observed area has an 
extent of about 100x100 m and contains a T-section. Figure 1 
shows example trajectories derived from images taken from 
three different positions. The background image is an ortho-
photo, derived from airborne images. 

 
Figure 1. Orthophoto with example trajectories 

 
The aim is the description of the trajectories by functions 
with a limited number of parameters. Source destination 
matrices could be determined at these crossroads through 
such parameters without any further effort. A classification 
approach shall be used here. 
 

2. PROCESSING APPROACH 

2.1 Video Acquisition and Object Detection 

In order to receive reliable and reproducible results, only 
compact digital industrial cameras with standard interfaces 
and protocols (e.g. IEEE1394, Ethernet) are deployed.  
 
Different image processing libraries or programs (e.g. 
OpenCV or HALCON) are available to extract moving ob-
jects from an image sequence. We used a special algorithm 
for background estimation, which adapts to the variable 
background and extracts the desired objects. The dedicated 
image coordinates as well as additional parameters like size 
and area were computed for each extracted traffic object. 
 
2.2 Sensor Orientation 

The existing tracking concept is based on extracted objects, 
which are geo-referenced to a world coordinate system. This 
concept allows the integration or fusion of additional data 
sources. The transformation between image and world coor-
dinates is based on collinearity equations. The Z-component 
in world coordinates is deduced by appointing a dedicated 
ground plane. An alternative is the use of a height profile. 
Additionally needed input parameters are the interior and 
exterior orientation of the camera. For the interior orientation 
(principal point, focal length and additional camera distor-
tion) of the cameras the 10 parameter Brown distortion 
model (Brown 1971) was used. The parameters are being 
determined by a bundle block adjustment.  
 
Calculating the exterior orientation of a camera (location of 
the projection centre and view direction) in a well known 
world coordinate system is based on previously GPS meas-
ured ground control points (GCPs). The accuracy of the 
points is better than 5 cm in position and hight. The orienta-
tion is deduced through these coordinates using DLT and the 
spatial resection algorithm (Luhmann 2006). 
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2.3 Tracking and Trajectories 

The aim of tracking is to map observations of measured ob-
jects to existing trajectories and to update the state vector 
describing those objects, e.g. position or shape. The tracking 
is carried out using a Kalman-filter approach.  
The basic idea is to transfer supplementary information con-
cerning the state into the filter approach in addition to the 
measurement. This forecast of the measuring results (predic-
tion) is derived from earlier results of the filter. Conse-
quently, this approach is recursive. 
 
The initialization of the state-vector is conducted from two 
consecutive images. The association of a measurement to an 
evaluated track is a statistical based decision-making process. 
Errors are related to clutter, object aggregation and splitting. 
The decision criteria minimize the rejection probability.  
 
The coordinate projection mentioned in the last paragraph 
and the tracking process provides the possibility to fuse data 
acquired from different sensors. The algorithm is independ-
ent of the sensor as long as the data is referenced in a joint 
coordinate system and they share the same time frame.  
 
The resulting trajectories are then used for different applica-
tions e.g. for the derivation of traffic parameters (TP). 
 
2.4 Trajectory analysis 

A deterministic description method for trajectories shall be 
introduced below. The functional descriptions for these tra-
jectories should be as simple as possible and permit a 
straightforward interpretation. Linear movements will be 
described by simple straight lines.  
 
Numerous suggestions of possible functions for curve tracks 
by functional dependencies have been made in the literature. 
Clothoid (Liscano et al. 1989) or G2-Splines (Forbes 1989) 
are curves whose bend depends of the arc length. Alterna-
tively, closed functions like B-Splines, Cartesian polynomi-
als fifth degree or Polarsplines (Nelson 1989) can be used as 
well. A common approach to approximate vehicle-based 
trajectories is to employ clothoids. Those functions derived 
from the fresnel integral are highly non linear. They are fun-
damental in road and railroad construction. Due to urban 
constraints the tracks of intersections and curves cannot fol-
low the curve of a clothoid whose shape is regarded as a 
trajectory that is especially comfortable to drive. Because 
there are only partial approximations of clothoids, they do 
not fit into the set of elementary functions that shall be re-
garded in this work. Moreover, the given trajectory has to be 
subdivided into parts in order to apply a clothoidal approxi-
mation. (Anderson et al. 1979) have proposed a description 
of tracks by hyperbolas. The great advantage is that the de-
rived parameters clarify directly geometric connections and 
permit a categorization and derivation of important features 
of the trajectories. A hyperbola is able to replicate straight 
lines as well as turning trajectories.  
 
The hyperbola fit serves as an example and is described next. 
The approach is based on least-square fitting of geometric 
elements. The equation for a hyperbola with semi-major axis 
parallel to the x-axis and semi-minor axis b parallel to the y-
axis is given by 
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Wherein mx,, my are the centre coordinates, the angle ϕ is the 
bearing of the semi-major axis. The implicit form of the hy-
perbola can be written as a general polynomial of second 
degree: 
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The following equations describe the conversion of the im-
plicit to the hyperbola parametric form: 
 

 Bearing of the semi-major axis 
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The parameter determination is based on the number of ob-
servations n, which are related to the functional model. The 
number of observations n has to be greater than the number 
of unknown parameters. 
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This can also be written as follows: 
 

l A x= ⋅  (12) 

 
The observation vector l is replaced by the measured obser-
vation and a small residuum ν. Therefore, the unknown vec-
tor x is replaced by the estimates with the result: 
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This result is known as a least-square adjustment, based on 
the L2 norm. This approach is not able to decide between 
hyperbola and ellipsoid. (Fitzgibbon et al. 1996) and (Fitz-
gibbon et al. 1999) describe an attempt for the inclusion of 
additional conditions by integration of a constraint matrix. 
Hence it is possible to reduce the resulting solution space so 
that the type of the object function (ellipse, hyperbole) can be 
steered. (Harlow et al. 2001) and (Harker et al. 2008) enlarge 
Fitzgibbon’s approach by decomposition of the Scattermatrix 
in the square, linear and constant part. The parameter esti-
mate becomes equivalent to the eigenvalue problem. This is a 
direct solution method. The approach determines an ellipse 
as well as two hyperboles. Figure 2 shows examples for the 
hyperbola and ellipse fit. 
 

  
Figure 2. Example fits for two tracks and classification 

 
3. CLASSIFICATION 

3.1 Class definition  

The traffic objects are identified within the image data and 
trajectories are derived from it. The trajectories are fitted to 
curves and their parameters are classified with the corre-
sponding functions. For the classification the same data set is 
used for all function classes.  
 
A part of the data set is used to train a classifier which in-
tends a class assignment for the trajectory with the parame-
ters. The other part serves for the verification.  

 
Figure 3. Visualisation of the different traffic lanes (classes) 

of the scene 
 
Seven classes were defined based on the scene (figure 3) and 
the traffic lanes:  
 
No From To Class Abbreviation 
1 Wegedorn Rudower right-turn WRR 
2 Wegedorn Rudower left-turn WRL 
3 Rudower Rudower east-

direction  
RO 

4 Rudower Rudower west-
direction 

RW 

5 Rudower Wegedorn right-turn RWR 
6 Rudower Wegedorn left-turn RWL 
7 No class membership No_Class 
 

Table 1. Class definition for the observed scene 
 
The used data set consists of 414 trajectories. Trajectories 
which are part of the classification process need to have a 
minimal length of 10 m and a minimal number of points of at 
least 6 points. The class No_Class consist of trajectories of 
pedestrians, bicyclists and erroneous tracks caused by errors 
in image processing and tracking. It is inadmissible that two 
driving directions are assigned to one trajectory. Relying on 
the shape only, opposite directions is merely to distinguish, 
since their functional parameters are similar. To achieve the 
distinction the approximate same path of the trajectory and 
the fitted function is determined. With this, the direction of 
the trajectory can be determined as an additional feature. 
Hence it direction can be distinguished between close lanes 
trajectories with opposite directions.  
 
3.2 Classification method 

A classifier determines the class affiliation with the charac-
teristic of item-specific features. These features are repre-
sented as a vector in a multidimensional feature space. The 
features correspond to the parameters which have been de-
termined by the approximation.  
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A rectangle classifier and a modified k nearest neighbours 
(KNN-) classifier are used. The result of the classification 
shall be unambiguously.  
 
k-nearest neighbours algorithm (KNN) is a method for classi-
fying objects based on closest training examples in the fea-
ture space. 
 
The rectangle classification (also cuboid classification) is a 
distribution free, nonparametric and supervised classification 
method (see figure 4). 
 

 
Figure 4. A simple rectangle classification in a 2D feature 

space 
 
The KNN classification needs a training data set. It is a non-
parametric method for the estimate of probability densities. 
The operation of the classifier is steered by k (number of 
regarded neighbours, a free selectable parameter) and δ (used 
metric).  Figure 5 shows the approach. 

 
Figure 5. Visualization of the KNN classification. The k=7 

nearest neighbour are used. The object g is as-
signed to the class B 

 
The metric δ defines the reliable determination of the dis-
tances to adjacent elements. The result of the classification 
depends substantially on the density of the learning set and 
the choice of the metric. Here the Mahalanobis distance was 
used. 
 

4. RESULTS 

 To-
tal 

N
C 

WR
R 

WR
L 

R
O 

R
W 

RW
R 

RW
L 

Ref 414 62 117 59 72 26 33 54 
Circ 414 62 119 59 68 21 34 51 
Elli 410 51 117 58 72 28 34 50 
Hyp 410 51 117 58 72 28 34 50 
Str   413 50 125 56 70 28 35 49 
 
Table 2. Summary of complete occurrence and the class oc-

currence of different trajectory types. Ref – refer-
ence, Circ – circle, Elli – ellipse, Hyp – hyper-
bola, Str - straight lines 

 

A data set of 414 different trajectories (Total) has been proc-
essed using different functions within the test data set. A total 
of 62 trajectories could not be classified (NC). A summary is 
given in table 2. 
 
The results shall be represented in greater detail by the hy-
perboles in the following. 
 
4.1 Hyperbola 

Figure 6 shows examples of the approximation of hyperbo-
les. 
 

 
 

Figure 6. Approximation of hyperboles 
 
In addition to the parameters of the conical sections the di-
rection of motion was uses for the classification. Figure 7 
shows the plot of the rotational angle ϕ (X) and the delta in 
degrees (φ) where the trajectory adapts to the hyperbola: 
 

 
Figure 7. Classification results  
 

Class  Cuboid Classifier KNN-Classifier 

Total 92.9% 97.8% 

No_Class 84.3% 98.0% 

WRR 95.7% 99.1% 

WRL 93.1% 99.0% 

RO 97.2% 99.5% 

RW 96.4% 96.4% 

RWR 85.3% 91.2% 

WRL 92.00% 94.0% 
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Table 3. Comparison of results for hyperbolas fits achieved 
by Coboid and KNN-Classifier   

Figure 7 shows a clear separation of the feature space. A high 
classification rate is achieved by both elementary classifiers 
(see table 3). 
 

5. CONCLUSION AND OUTLOOK 

Table 3 affirms a high reliability on these elementary func-
tions, with respect to the used basic classification methods. 
Mistakes within the classification mostly reside due to scene 
behaviour that occurs fairly rare (e.g. car turning at the inter-
section) or is not modelled by the underlying functions (e.g. 
pedestrians or cyclists crossing in very custom patterns). The 
shown approaches have been tested and verified in a real-
time environment with a multi-camera system. 
 
The system shall to automatically observe the traffic on 
crossroads in future. For example source-destination depend-
ences can be determined with that. 
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ABSTRACT: 

 
The reconstruction of 3D city models has matured in recent years from a research topic and niche market to commercial products and 
services. When constructing models on a large scale, it is inevitable to have reconstruction tools available that offer a high level of 
automation and reliably produce valid models within the required accuracy. In this paper, we present a 3D building reconstruction 
approach, which produces LOD2 models from existing ground plans and airborne LIDAR data. As well-formed roof structures are of 
high priority to us, we developed an approach that constructs models by assembling building blocks from a library of parameterized 
standard shapes. The basis of our work is a 2D partitioning algorithm that splits a building’s footprint into nonintersecting, mostly 
quadrangular sections. A particular challenge thereby is to generate a partitioning of the footprint that approximates the general shape 
of the outline with as few pieces as possible. Once at hand, each piece is given a roof shape that best fits the LIDAR points in its area 
and integrates well with the neighbouring pieces. An implementation of the approach is used now for quite some time in a production 
environment and many commercial projects have been successfully completed. The second part of this paper reflects the experiences 
that we have made with this approach working on the 3D reconstruction of the entire cities of East Berlin and Cologne. 
 
 
 

1. INTRODUCTION 

3D building reconstruction has been a topic for quite some time 
now. Many research papers have been published; commercial 
services and software are available. (Brenner, 2005), e.g., gives 
a good overview of reconstruction methods and points out that 
“research is still far from the goal of the initially envisioned 
fully automatic reconstruction systems”. This situation has not 
yet changed much, although a lot of research is still devoted to 
this topic, as can be seen in the multitude of recent publications 
(e.g. (Arefi et al., 2008), (Möser et al., 2009), (Sohn et al., 
2008)). 
 
The subject of this paper is on the generation of realistic 3D city 
models in LOD2 as it is defined in the official OGC standard 
CityGML (see e.g. (Kolbe, 2009)). At this LOD, buildings have 
distinctive roof structures and flat facades that are textured from 
terrestrial or oblique aerial images. 
 
As the data basis, we rely on existing ground plans and airborne 
LIDAR data. A frequent requirement, especially from customers 
within the mainland Europe, is that the provided building 
outlines are to be preserved with only little tolerance and that 
ridge and eaves heights must be very accurate. This is especially 
important so that the facades and roofs can be properly mapped 
from oblique aerial images. 
 
The presented reconstruction approach is motivated from our 
research on the simplification of 3D building models for map-
like representations (Kada, 2007). An integral part of this work 
lies on a new method to decompose a 2D building footprint into 
a small set of nonintersecting primitives. Although the resulting 
partitioning only approximates the original outline, it is still 

accurate enough for reconstruction purposes. The benefit is, 
however, that the algorithm separates the sections nicely, 
especially for residential houses with gabled or hipped roofs. 
This eases the task of determining and assembling a valid roof 
structure from parameterized, standard shapes.  
 
In the second part of the paper, we give insight into two large-
area projects that we have completed using the described 3D 
reconstruction system: East Berlin and Cologne. Figure 1 shows 
the reconstructed 3D city model of Berlin with textures mapped 
from oblique imagery. 
 
 

 
Figure 1. Real-time visualization of the 3D city model of 

Berlin. 
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2. RECONSTRUCTION ALGORITHM 

In our approach, we assume that the majority of residential 
houses have either one main section or multiple connected 
sections, with additional smaller extensions, and that a partition 
thereof can be properly derived from the outline polygon. Once 
such a partition is found, a general geometrical description of 
the roof can be constructed by assigning a parameterized 
standard shape to each section. However, the difficulty to 
generate correct facade and roof shapes from a partition 
increases with the number, shape and arrangement of its 
elements. We therefore generate a set of non-overlapping, 
mostly quadrilateral shaped polygons that together approximate 
the original footprint (cp. Figure 2). Other ground shapes may 
also occur, but those primitives are then restricted to only bear 
certain roof shapes. 
 
 

 
Figure 2. Building footprint and its decomposition into cells. 

 
 
The roof is then reconstructed by determining a shape for each 
cell from the LIDAR points with regard to the neighbour cells 
(cp. Figure 3). After identifying the points inside a cell, the 
normal vectors from the local regression planes of the points are 
tested against all possible shapes. Here, only the orientation is 
used to speed up comparing the many shapes we support. The 
one that best fits is then chosen and its parameters estimated 
from the 3D point coordinates. Cells whose neighbour 
configurations suggest corner-, t- and cross-junctions are 
examined again and replaced if a junction shape can be fitted 
according to the neighbour shapes and parameters. 
 
 

 
Figure 3. LIDAR points inside the cells coloured according to 
their local regression plane and the best fitting roof shapes. 
 
 
After the geometric reconstruction, the building models are 
textured from oblique aerial images. Any lack of geometric 
detail that is due to our rather restricting model oriented 
approach is then hardly noticeable in the result. 

2.1 Cell Decomposition 

As referred to in (Foley et. al, 1996), a spatial partitioning 
representation in solid modelling, where solids are decomposed 
into nonintersecting, typically parameterized primitives, is 
called cell decomposition. 
 
Serving as the basis for the building reconstruction process, we 
first of all generate such a partition for each building footprint. 
As mentioned above, this is done solely from information found 
in the building’s outline. The big challenge herein is to avoid 
decomposing the area in too many small cells, for which it 
becomes increasingly difficult to reconstruct a well-shaped roof, 
especially if the building outline is very detailed and consists of 
many short line sections (see Figure 4). So instead of using all 
the available lines from the outline polygon and infinitely 
extend them to split the footprint, an adequate subset must be 
found that results in a set of primitives that together reflects 
well the characteristic shape of the building. However, the 
resulting outline will not be identical to the original one, but 
rather be a generalization thereof. So to best resemble the 
outline, the set of decomposition lines should approximate well 
the original points and line segments. 
 
 

 
Figure 4. Cell decomposition of a building footprint using all 
line segments of the outline and only an averaged subset. 
 
 
Our algorithm for generating cell decompositions from given 
outlines has been thoroughly described in the context of 3D 
building generalization (see e.g. (Kada, 2007)). But instead of 
generating 3D decomposition planes from the facade polygons 
of a 3D building model, the 2D decomposition lines are now 
generated from the 2D outline. 
 
In a nutshell, the line segments are grouped into subsets of 
“parallel” lines that are pair wise a maximum distance away 
from each other. This is the generalization distance, which 
means in this context, that the cells resulting from the footprint 
partitioning will not have sides that are shorter than this length. 
Line segments are considered parallel if the angle between their 
directions is below an angle threshold. This allows for a better 
generalization of connected line segments and therefore helps to 
keep the number of generated cells low. For each subset of line 
segments, the associated decomposition line is computed by 
averaging the line equations of its elements. Short line segments 
of arbitrary direction, but whose endpoints are both closer to 
the decomposition line than the parallel line segments, are 
associated with this subset, but will not contribute to the 
averaging of this or any other decomposition line. 
 
For example, the green line segments on the left side of Figure 
5 are considered parallel under the chosen angle threshold of 15 
degrees. The added perpendicular distance of any two endpoints 
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to the red decomposition line, which is the average of the green 
line segments, is below the generalization distance. While the 
connecting orange line segment is not parallel to any green line 
segments, its endpoints also falls under the distance threshold 
and therefore does not contribute to any decomposition line. 
 
 

 
Figure 5. Parallel line segments (green) form decomposition 
lines (red), rendering short segments in between (orange) 
unnecessary. 
 
 
Under the general assumption that ridge and eaves lines should 
strictly run horizontally, many roof shapes require the ground 
shape of cells to be trapezoids or rhomboids. Otherwise not all 
roof faces will be planar and must be split into triangles to form 
valid solids. Figure 6 shows an extreme example of a cell with a 
Berliner roof shape where none of the four sides of the ground 
shape are parallel. The middle face of the roof must be split into 
two triangles, which is generally not acceptable and should be 
avoided if possible. Due to the averaging process, the set of 
resulting decomposition lines are not guaranteed to be parallel. 
We therefore adjust the decomposition lines slightly so that 
parallelism and rectangularity are enforced for pairs of 
decomposition lines with small directional deviations. The same 
Berliner roof shape of Figure 6 with a trapezoid ground shape 
results in a valid solid after adjustment. 
 
 

 
Figure 6. Extreme example of a Berliner roof primitive with a 
non-parallel before and a trapezoid roof shape after adjustment. 
 
 
Once the decomposition lines have been generated, a rectangle 
approximately two times the minimal bounding rectangle is 
taken and split by these lines, forming nonintersecting cells in 
the process. Then the cells are compared with the original 
footprint, and the ones with a low overlap value are discarded. 
Large cells assure that this classification fails only in few cases. 
 
Figure 7 shows an example cell decomposition of a given 
footprint. Cells with a low overlap with the original footprint 
were discarded in the process. The four “horizontal” lines are 
pair wise parallel, whereas the five “vertical” lines are all 

parallel, resulting in mostly rhomboid-shaped cells. Although 
the dotted cells are shaped as trapezoids, most roof shapes 
fitting between two opposite neighbour cells are valid under 
these conditions. 
 
 

 
Figure 7. Cell decomposition of a given footprint into 
rhomboids and trapezoids, the latter marked with dots. 
 
 
2.2 Roof Shape Determination 

Now that a cell decomposition of the footprint is available, the 
parameterized roof shapes of all cells need to be found. We do 
this by examining the normal vectors of all points inside the 
same cell. As point normal vectors are usually not given in 
surface models, they first have to be generated. If the surface 
model is structured as a grid, we compute the normal vector of 
each point from the eight triangles fanned around it and average 
their normal vectors. However, if the raw data is available in 
form of an unstructured point cloud, we estimate a point’s local 
plane of regression from its five nearest neighbours and take the 
resulting surface normal vector. 
 
For the construction of the building’s roof, we classify the roof 
shapes that we use in our approach into three types: basic, 
connecting and manual shapes. Whereas the shapes of the first 
two classes can be determined in an automatic process, the last 
class of roof shapes is only available for manual editing. Among 
the basic roof shapes are flat, shed, gabled, hipped and Berliner 
roof (see Figure 8).  
 
 

 
Figure 8. Flat, shed, gabled, hipped and Berliner roof shape. 

 
 
As not all houses have only one section, there is a need to 
connect the roofs of the sections with specific junction shapes. 
Figure 9 shows a small selection of connecting roof shapes. 
 
 

 
Figure 9. Examples of connecting roof shapes. 
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In summary, we determine a cell’s roof type by comparing the 
points’ normal vectors with the roof faces of all possible shapes 
and compute the percentage of points that fit the direction of the 
roof part they are inside. For a gabled roof, e.g., we divide the 
cell into two equal parts, distribute the points accordingly and 
count the number of points whose normal vectors are in 
accordance with the respective side (see Figure 10). Each roof 
type defines one or more parts, whose size may or may not be 
dependent on the roof parameters. E.g., the ridge line length of 
a hipped roof is variable and therefore affects the size of the 
four roof parts. The longer the ridge line grows, the smaller the 
two side hips become. This affects how accurately the shape can 
be determined. 
 
 

 
Figure 10. The face normal directions of the four basic roof 
shapes: flat, shed, gabled and hipped. The flat roof face shows 
upwards. 
 
 
2.2.1 Flat, Shed and Gabled Roof: When considering all 
junction elements, these basic shapes make up over twenty 
different shapes. The high number comes from the fact, that 
non-symmetric shapes can be rotated four times, resulting each 
time in a new shape. Only rotational symmetric shapes result in 
one shape and axial symmetric shapes in two shapes. 
 
To efficiently determine if the points fit any of these basic roof 
types, or a connecting shape thereof, each cells footprint is 
broken into eight sections. For each section, the points are 
classified as pointing up, north, east, south and west depending 
on the cells orientation, where the first side of a cell is 
considered the south side. For a point to be classified as up, the 
angle between the point’s normal direction and the upward 
vector must be below 30 degrees. For the other four classes, the 
2D component of the point’s normal vector must point more 
towards that side than to the other three, which reflects an angle 
below 45 degrees. Once all the points are classified, the 
percentage of matching points can be simply added up for all 
shapes. 
 
Figure 11 shows four types of gabled roofs. For these classes of 
roof shapes, also the corner elements are used as they are 
basically free to compute. The basic gabled shape is axial 
symmetric and therefore only has two variants, the corner- and 
T-junctions can be rotated four times and therefore result in 
four variants each and the cross-junction is axial symmetric and 
therefore has one variant. The number of matching points for 
the gabled roof can be easily computed by adding the number of 
points in the green sections that show northwards and the 
number of points in the red sections that show southwards. The 
other shapes are computed accordingly, where the points in the 
blue sections must show westwards and the points in the yellow 
sections eastwards. 
 
Once the points have been distributed to the eight sections and 
classified according to their normal direction, the time to do the 
summation is neglectable. This makes roof shapes whose shape 
can be reduced to the eight sections very appealing. 

 
Figure 11. Gabled roof and its corner-, T- and cross-junctions 
and the direction points inside a particular face must show to. 
 
 
2.2.2 Hipped Roof: For hipped (and other roof shapes that 
cannot be as easily divided into the eight sections as the 
aforementioned shapes), the roof area is divided individually. 
This is, however, not as efficient as before and some 
assumptions have to be made for some shapes. E.g. the ridge 
length of a hipped roof should be variable, but we assume that 
all four slopes are the same, which enforces a certain ridge 
length. This way only one variant must be evaluated, but it still 
reliably differentiates a hipped from e.g. a tent or gabled roof. 
 
2.2.3 Berliner Roof: The Berliner roof is an asymmetric 
roof shape, which is basically a shed roof disinclined slightly to 
the back side. By having a steep slant at the front and 
sometimes also at the back side, the roof appears to be gabled 
from a pedestrians point of view. This shape is very common 
for Berlin apartment houses build during the period of 
promoterism in the 19th century. 
 
To identify the front side of a cell with a possible Berliner roof, 
we seek the side closest to the building’s oriented bounding 
rectangle. If the cell is a corner cell, or if all cells are side by 
side, then two or more sides of the cell should be within closest 
distance to the bounding rectangle. Here, the side with the 
highest number of normal vectors pointing towards to is 
determined. This is in most cases the back side. Both methods 
are necessary, as the second one generally fails more often, but 
is the only one that works for the latter case. 
 
Then, the distances from the front and back side to the two fake 
ridge lines are determined using a plane sweep approach. At the 
front ridge line, the 2D components of the points’ normal 
vectors show in opposite directions. As for the back ridge line, 
we say that all points’ normal vectors with an angle below 30 
degree compared to the upward vector belong to the shed part 
of the roof. Using these two criteria, we can accurately 
determine the two ridge lines that separate the three roof 
regions. Their height is computed from the plane equations 
estimated from the points of the two steep slant sections. 
 
2.3 Parameter Estimation 

Roof parameters vary from shape to shape. However, all shapes 
have one eaves height and up to two ridge heights, which are to 
be estimated from the LIDAR points. Among others, the cell’s 
footprint defines the directions of the eaves and ridge lines. As 
all face slopes are linearly related, it allows determining them at 
once by simply estimating one plane equation from the given 
points. While one face defines a reference system, the points in 
other faces are translated into it accordingly. From the resulting 
plane equation, the eaves and ridge heights can be determined 
from the reference face. The resulting shape parameters best fits 
all the faces to the input points. 
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2.4 Roof Junctions:  

Cells that have neighbor cells at two consecutive sides or at 
three or more sides are examined again. These cells are 
candidates for connecting shapes. Based on the shape types, the 
parameters and the arrangement of the neighbor cells, 
compatible connecting shapes are determined. The one that 
connects the most neighbor cells to a sound roof structure is 
then chosen and its parameters determined from the parameters 
of the neighbor cells. 
 
2.5 Manuel Editing 

Because not all roof structures can be fully automatically 
reconstructed, there is a need for manual editing. In our editing 
tool, the decomposition lines can be copied, added, deleted, 
translated and rotated. The cells’ roof shapes are automatically 
reconstructed after every manual step, so that the operator can 
immediately see the results. Once the cell decomposition fits the 
roof’s shape, the cell parameters can be manually adjusted or 
even copied from other cells. If the decomposition produces too 
many small cells, then their number can be decreased by a 
merging operation. 
 
Even though editing the building models using decomposition 
lines is not so straight-forward, we found that operators got 
used to it very quickly and can efficiently produce even 
landmarks with complex geometry. The manual mode also 
allows for more complex roof shapes like mansard, cupola, 
barrel and even some detail elements like dormers.  
 
 

3. PROJECTS 

While still in development, we started using the reconstruction 
software in a real production environment. Several large-area 
projects have since been successfully completed. The feedback 
in the early stages of development helped us to recognize and 
adapt to arising problems. Two of our early projects were the 
3D reconstruction of East Berlin and Cologne, two major cities 
in Germany. The 3D city model of Berlin is also available 
online for use in Google Earth (Berlin 3D, 2009). 
 
3.1 East Berlin, Germany 

The first project with our new software was to perform a 3D 
building reconstruction from Berlin’s LIDAR data. The total 
area of the project was 498 km² with approximately 244,000 
buildings. The project was an extension of the original 3D City 
model of Berlin, Germany, which is to date still the largest city 
model transported to the Google Earth platform. Input data 
included a DTM, airborne LIDAR and building footprints. See 
Figure 12 and Figure 13 for the resulting model. 
 
Due to the large number of buildings in East Berlin and project 
time constraints, photogrammetric extraction was immediately 
deemed as being too time consuming and costly. It was 
therefore decided to use LIDAR data instead. All LOD 2 
building models are geo-referenced geometry, which were later 
textured using aerial oblique imagery. 
 
The Berliner Roof– a particularly unusual roof type typically 
found on many buildings in Berlin – presented a challenge as 
well as numerous inner courtyards presented problems during 
extraction. Therefore, the reconstruction approach had to be 
adapted to automatically detect this unique roof structure. As a 

result, a total of 17 individual roof types have been additionally 
integrated into the software to enable greater accuracy during 
reconstruction and to reduce the amount of manual editing 
needed. 
 
As the software was constantly improved during the duration of 
the project, the amount of manual editing needed for the 
reconstructed 3D buildings was reduced from 30 percent in 
denser areas to 20 percent; manual editing for the outer lying 
areas also experienced a sharp improvement: from 20 percent to 
15 percent. 
 
 

 
Figure 12. 3D city model of East Berlin. 

 
 
 

 
Figure 13. 3D city model of Berlin textured from oblique 
images showing part of the prominent Kurfürstendamm. 
 
 
3.2 Cologne, Germany 

The existing 3D city model of Cologne is used by several 
administrative departments as a complement to the existing GIS 
data inventory held by the Cologne Survey Department. It was 
created from the basis of building storeys using two-
dimensional footprints; therefore the true heights of the 
buildings were not accurate. In order to produce a more realistic 
representation of Cologne in 3D to be used for urban planning 
and emergency response, the survey department decided to use 
the data from the most recent LIDAR flyover to perform a real 
3D building reconstruction. See Figure 14 and Figure 15 for the 
results. 
 
Cologne’s city boundaries encompass approximately 415 km² 
with 280,000 buildings; therefore it was decided to use airborne 
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LIDAR instead of photogrammetry. In many areas of the inner 
city, Cologne has an extreme building density, which 
complicated a clean separation of building geometry and roof 
forms, even though the building outlines contained in the 
ground cadastre map were examined beforehand for their 
accuracy.  
 
In addition, there were many special building structures such as 
churches that had to be extracted from the airborne LiDAR 
data. Pre-processing efforts were further complicated by the fact 
that Cologne’s ground plan data was outdated or incomplete as 
several new buildings that had been erected and still others had 
been torn down since the last update made to the ground 
cadastre map.  
 
 

 
Figure 14. 3D city model of Cologne. 

 
 
After a careful study of the digital ground map it was 
determined that first several adjustments had to be made, for 
example removing underground buildings and structures such 
as parking garages and identify torn down buildings. This 
required examining the discrepancies between the DTM, DSM 
and building outlines to create the final 3D city model. 
 
Finally, many larger buildings appeared in several different 
attribute tables containing sometimes conflicting information, 
therefore presented a challenge for both the client as well as the 
operators because these buildings still needed to be 
reconstructed without altering their original building footprints. 
 
 

 
Figure 15. 3D city model of Cologne. 

 
 
We have completed a wide-area 3D city model in LOD2 for the 
whole of Cologne by the end of September 2008. This new 
model will be integrated into the existing model, thereby 
replacing the GIS data with a much more accurate 

representation of the building heights. Because the inner city 
buildings will receive realistic façade textures, highly accurate 
building heights and roof structures as well as building details 
were a key project requirement. 
 
The entire model will be used a decision making tool for urban 
planning and serves as a visualisation tool and complement to 
Cologne’s Master Plan. The amount of overall manual post 
editing required with the software has been reduced since 
working on the East Berlin model to 15 percent. 
 
 

4. CONCLUSION AND FUTURE WORK 

We have presented an approach for the automatic 
reconstruction of 3D building models from LIDAR data and 
existing ground plans. It is based on an algorithm to decompose 
given footprints into sets of nonintersecting cells, for which 
roof shapes are then determined from the normal directions of 
the LIDAR points. The validity of this approach has been 
proven effective, as can be judged by the 3D city models of East 
Berlin and Cologne.  
 
The next step is to increase the amount of detail by loosening 
some of the restrictions of our shapes and by making them more 
flexible. This is already possible in manual editing. However, to 
increase both the richness in detail and the automation, we plan 
to integrate a segmentation of the roof points to selectively 
decompose the footprints without generating more cells. 
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ABSTRACT: 
 
The aim of the authors’ research is to develop an automated or semi-automated workflow for the extraction of objects such as 
buildings, trees and roads for noise mapping and road safety purposes.  The workflow must utilise national airborne spatial data 
available throughout the country and be capable of robust incorporation in the noise modelling systems of a national roads authority.  
This paper focuses on the extraction of multiple objects by fusing data captured by two independent sensors, namely the Leica 
ADS40 aerial camera and the Leica ALS50 airborne laser scanner (LiDAR). A workflow has been developed for the extraction of 
objects utilizing height values from a normalised DSM generated using LiDAR or aerial images, multiple LiDAR echo data and 
NDVI (Normalized Difference Vegetation Index) data computed from multispectral ADS40 data. 
Major tasks include LiDAR data classification, segmentation and its integration with the information extracted from aerial images. 
Buildings are extracted first and this facilitates the extraction of other objects. Preliminary results of this semi-automated process 
indicate high completeness rates for buildings trees and roads but 60% quality rates (e.g. buildings).  Quality may be improved by 
manual extraction of small objects but continuing research is focussed on reducing reliance on such manual intervention. 
 

                                                                 
*  Salman Ali Mumtaz 

1. INTRODUCTION 

The National Roads Authority (NRA) in Ireland is responsible 
for generating noise maps in the environment of roads used by 
more than 8220 vehicles per day. According to the EU noise 
directive this exercise must be repeated every five years. Inputs 
for generating the noise maps include terrain model, location 
and dimension of buildings, trees, noise barriers and the 
geometric properties of roads. Capturing this data using field 
surveys or digital images is time consuming and expensive, 
especially if the same exercise must be repeated every five 
years. It is the intention of this work that all required objects be 
extracted using automatic or semiautomatic techniques from 
LiDAR and aerial image data of the type available from the 
National Mapping Agency of Ireland, OSi (Ordnance Survey of 
Ireland). Later the extracted information can be easily 
combined and analyzed along with noise data in a GIS system. 
For noise mapping, building detail or tree models are not 
required.  Buildings or trees boundaries with height information 
are sufficient. 
 
High resolution image and LiDAR sensors (ADS40 & ALS50) 
were used to capture the data for a part of County Sligo in the 
northwest of Ireland. Digital images were captured in April 
2007 with a ground resolution of 15 cm. LiDAR data were 
captured separately in May 2007 at a flying height of 1241 m 
with a swath width of 800 m, resulting in an average point 
density of approximately 2 points/m2. The ALS50 sensor 
recorded position, multiple echoes and intensity of the returning 
pulse.  
 
The area selected for processing is about 3 km2 and is covered 
by a single image strip and four LiDAR strips. This eliminates 
the necessity for bundle block adjustment and ground control 

point acquisition. The reason for relying completely on direct 
geo-referencing in this research is the fact that in many 
situations ground control points may not be available. Strip 
adjustment of the LiDAR data was performed using the Terra 
Match application from TerraSolid. 
 
1.1 Motivation 

In recent years, research on automated object extraction has 
increased because of the increased use of GIS (Geographical 
Information Systems) with the consequential need for data 
acquisition and update. 
 
Digital Photogrammetry is considered to be one of the most 
precise methods for capturing large scale data for GIS analysis 
from high resolution aerial images. However, it requires 
significant resources to digitize all objects of interest. As 
detailed high resolution digital images are regularly acquired as 
part of the national programme of OSi, it is considered 
important to develop automatic or semi-automatic techniques 
to exploit their potential for applications such as noise 
modelling involving the extraction of objects such as buildings, 
trees and roads. 
 
LiDAR can provide high density 3D point clouds in a very 
short time with acceptable horizontal and high vertical 
accuracy.  OSi also acquires national LiDAR data using the 
ALS50 sensor from Leica Geosystems.   The availability to the 
national roads authority of Ireland of both of these high 
resolution data sources provides the impetus for this research. 
 
However, the development in sensor technology is far more 
rapid than the advancements in automatic or semi automatic 
object extraction. Moreover there is still a large gap between 
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the theoretical work on fully automated object extraction and 
practical applications of the same (Mayer 2008). Success in 
automatic object extraction will also help in determining 
changes that occur between noise surveys (5 years) by 
comparing the extracted objects at the different epochs and 
should speed up the updating process of the GIS database. 
 
1.2 Related Work 

LiDAR has been extensively used for the generation of both 
DSMs (Digital Surface Model) and DTMs (Digital Terrain 
Model). Different classification methods have been used for the 
classification of terrain and off terrain points (Sithole & 
Vosselman, 2003). Different approaches have been used for the 
detection and reconstruction of buildings from LiDAR data 
(Brunn & Weidner, 1997 and Clode et al., 2004). Haitao et al. 
(2007) used aerial images and LiDAR data for land cover 
classification based on SVM (Scalable Vector Machine). Haala 
& Brener (1999) also used the combination of multispectral 
imagery and LiDAR data for the extraction of buildings, trees 
and grass covered areas. Trees and grass covered areas were 
classified easily from the multispectral imagery but were found 
difficult to separate.  Similarly, trees and buildings were 
separated using height differences between DSM and DTM. 
Both data sources were combined in order to identify the three 
classification types. Rottensteiner et al. (2004) classified land 
cover into four different classes namely, buildings, trees, grass 
lands, and bare soil. This was achieved by combining LiDAR 
data and multispectral images. Prior to performing building 
detection by data fusion based on the theory of Dempster-
Shafer, the LiDAR data was pre-processed to generate a DTM. 
For the extraction of roads different information sources such 
as multispectral images from airborne and space borne sensors 
were used. Clode et al. (2007) used only LiDAR for road 
extraction.  Despite encouraging results, there are still many 
fundamental questions to be answered for road extraction in 
urban areas (Mayer et al., 2008). 
 

2. METHOD 

The method under investigation is based on a workflow that 
identifies and classifies buildings, trees and other objects by 
fusing the information from LiDAR and aerial image data.  
This information includes the normalised digital surface model 
(NDSM) and multiple echoes from the LiDAR data together 
with Normalized Difference Vegetation Index (NDVI) data 
generated from the airborne imagery.  The method is depicted 
in Figure 1.  Three major task groups may be identified, namely 
the image group, LiDAR group and object extraction group.  
 

3. WORKFLOW 

Within the image group of tasks, the first step is to produce 
orthophotos for each spectral channel of the ADS40 sensor, i.e. 
Red (R), Green (G), Blue (B) & Near Infrared (NIR). For these 
orthophotos, the required DSM can be created relatively 
automatically using the panchromatic forward and backward 
image data captured by the ADS40 sensor.  The effect of DSM 
quality on orthophoto generation is shown in Figure 2. The 
upper part of the figure shows a rectified building using a DSM 
generated by aerial images and the lower part shows the same 
building rectified using a DSM from LiDAR data. 

 
 

Figure 1: Method Workflow 
 

 
 

Figure 2: Effect of DSM on Building Rectification 
 

In case of the building illustrated in Figure 2, a DSM created 
from LiDAR data with a resolution of 0.5 m (the lower 
example) provided sharper edges compared to that generated 
from the image DSM and was used in the generation of the 
orthophotos.  As a prerequisite to this step the quality of the 
registration between the airborne imagery and the LiDAR data 
must be verified.  The Nearest Neighbourhood method was 
used as a sampling method for orthophoto generation. Separate 
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orthophotos were generated from the R, G, B and NIR channels 
(a true colour orthophoto was also generated) and the NDVI 
was calculated using the following formula:  
 

NDVI = (NIR-R) / (NIR+R) 
 
NDVI values range from -1 to +1 which suggests that if the 
pixel value is close to -1 it does not belong to healthy 
vegetation or vice versa.  As a result, NDVI data could assist in 
separating vegetation from buildings in a DSM.  
 
Figure 3 shows the effect of sun position on selecting an NDVI 
threshold to separate buildings from vegetation. In the shadow 
area NDVI values are larger than the portion of the building 
directly facing the sun. A larger threshold value of 0.3 was 
selected to differentiate between buildings and vegetation. 
Because of this large threshold value some vegetation also 
appears with the buildings. 
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Figure 3: NDVI Threshold for Buildings  
 
Within the LiDAR group of tasks, the first step is the 
generation of a DSM and DTM from the LiDAR data 
(TerraSolid software was used). In order to get the absolute 
height of the objects the DTM was subtracted from the DSM to 
give the NDSM. A further refinement of the NDSM can then be 
achieved by making use of multiple LiDAR echo data.  These 
occur from building edges and trees. Figure 4 (Clode et al., 
2005) shows how the laser beam interacts with building edges 
and trees. 
 

 
 

Figure 4: Laser Interactions 
 
Firstly, the filtered multiple echoes (figure 5) were converted 
into an image.  Gaps between pixels of less than 3 metres were 
filled and a binary image was generated.  Selecting a value for 
gap filling depends on the density of the original point data. If 
the density is high a small value can serve the purpose but it 
should not be too high that it causes individual trees close to 
each other to merge. 

The separation of multiple echo data (Figure 5) from the 
NDSM, by multiplication by the binary data, results in data 
only from those objects that record a single reflection.  These 
include buildings and other solid objects but also vegetation 
that returned single echoes. 
 

 
Figure 5:  Filtered Multiple Echoes 

 
The next step was to apply a height threshold of 2.5m to the 
NDSM to eliminate objects such as hedges, cars etc and the 
resultant NDSM containing buildings, vegetation and other tall 
objects was converted to a binary image.  All pixels having a 
value lower than or equal to 2.5 m were assigned a zero value 
and the remainder a value of one (Figure 6).   
 
A morphological operation such as closing and opening was 
used for filling small gaps in the binary image. Care should be 
taken as too many repetitions can result in rounding of the 
sharp building edges and loss of important detail. 
 
This binary image contains pixels that belong to buildings and 
remaining trees and needs further classification. This was 
achieved by introducing the NDVI image described as part of 
the image group of tasks. 
 

 
 

Figure 6: Binary Image with Height Threshold 
 
The NDSM and the NDVI images were combined and the 
maximum likelihood classification method was used for the 
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extraction of buildings (Figure 7). The area was calculated for 
each building after conversion to vector format and used as a 
threshold for separating main buildings from smaller structures 
in front or behind the main buildings. These areas also include 
trucks and vans on the roads or parked near to buildings and are 
detected as buildings. These areas were retained and classified 
later into buildings, vegetation or other objects. 
 

 
 

Figure 7: Extracted Buildings 
 
To assign each building an individual height, building centroids 
were determined. For each centroid, heights were determined 
from the DSM by bilinear interpolation and the same process 
was used for determining vegetation height. 
 
For the purpose of vegetation extraction, the final building data 
was subtracted from the NDSM. This resulted in vegetation 
present in the NDSM layer that is higher than 2.5m. However, 
the filtered multiple echo data (Figure 5) was also processed 
further.  First, intermediate and last echoes represent reflections 
from the edges of buildings and trees. Once buildings were 
classified, building boundaries were used as an input to remove 
all multiple echo points that belong to building edges.  Multiple 
reflections from large trees, together with compactness 
(area/perimeter2) were used to classify large single trees and 
groves (Figure 8). 
 

 
 

Figure 8: Extracted Trees and Groves 
 

The remaining objects to be classified were roads which are 
part of the generated DTM. NDVI data below a threshold of 
0.1 and the previously classified objects were used. Using the 
threshold eliminates most of the area having vegetation but 
does not help much in the areas with barren land. Their spectral 
signature value is also very close to the roads. Even for the 
roads the reflection value is not constant. It varies with age and 
type of material used in the road surface. Previously extracted 
buildings and vegetation were subtracted from the NDVI to 
extract road candidates. 
 

 
 

Figure 9: Extracted Roads 
 
Gaps are present in the extracted roads and this is because of 
the trees and building shadows. This section of the road is not 
visible in aerial photos and LiDAR and needs further research 
for its successful extraction. Finally all the extracted objects 
were combined together and integrated into a specialized GIS 
system (Figures 10 and 11). 
 

4. CLASSIFICATION ASSESSMENT 

Results of the workflow were evaluated after the method of 
Heipke et al. (1997).  Using this method, three different states 
for any feature can be identified (Hatger, 2006). 
 
True positive (TP) - A phenomenon that is present within the 
input data and that has successfully been identified within the 
output data. 
 
False positive (FP) - A phenomenon that is not present within 
the input data but that has falsely been found to be a 
phenomenon by the algorithm. Thus it is written to output data. 
 
False negative (FN) - A phenomenon that is present within the 
input data but that has not been identified by the algorithm and 
therefore has been omitted from the output data. 
 
Then we define Completeness, Correctness and Quality by 

 
Completeness = TP / (TP + FN) 

 
Correctness = TP/ (TP + FP) 

 
Quality = TP / (TP + FP + FN) 
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Object Completeness 
(%) 

Correctness 
(%) 

Quality 
(%) 

Buildings 98 72 60 
Trees 99 83 80 
Roads 78 72 62 

 
Table 1: Accuracy Assessment 

 

 
 

Figure 10: Extracted Objects & Orthophoto 
 

 
 

Figure 11: 3D Model (County Sligo) 
 

5. DISCUSSION 

The classification results, indicated in Table 1, are the result of 
automated processes, depending on the choice of appropriate 
parameters and thresholds. 

 
Building extraction is the first step in the classification process 
and is therefore important for the extraction of further objects. 
A completeness value of 98% implies that the adopted strategy 
has been successful in the identification of these objects. 
However correctness and quality values are significantly less 
than completeness due to the influence of FP values. FP values 
in buildings arise from large trucks or industrial installations 
incorrectly identified as buildings. However, FN values (i.e. 
missed buildings) mostly occurred for small buildings less than 
50 sq. m.  
 
In a subsequent manual step, these small buildings were 
individually identified and included in the final building layer. 
The identification of all buildings in the area in this way 
allowed the extracted vegetation data to be improved, which 
later helped in the extraction of roads. Commercial or 
residential buildings, having glass roofs or green colour were 
missed in the NDVI layer but they existed in the NDSM and 
were added to the building layer manually. Many small sheds 
were identified in the backyards of houses which are not part of 
the buildings, which significantly reduced the correctness 
value. 
 
Vegetation was extracted by subtracting the building layer 
from the NDSM. Very small buildings which appeared in the 
vegetation layer were identified and manually added to the 
building layer.  Continuing research is targeted at reducing the 
dependence on such manual steps. 
 
Multiple reflections, size and compactness were used to 
separate single trees from groves. However, the LiDAR sensor 
can efficiently differentiate between multiple reflections only 
where their height differences are significant. 
 
Roads appear to be the most difficult objects to extract. They 
are part of the DTM and have spectral reflectance, which varies 
a lot in a single image. Setting a NDVI threshold helps identify 
the areas where there is vegetation or not. Reflections from 
barren land or walking trails in the fields also have very low 
NDVI values. Roads which are not covered by building 
shadows or trees are detected successfully. Road markings of 
different colours also affect the extraction process. Roads 
connecting houses to the road are of different materials and 
need to be classified separately.  
 

6. CONCLUSION 

The accuracy of the generated orthophoto is critical for any 
classification technique using LiDAR and aerial images. Due to 
the nature of the push broom sensor and the configuration of 
the test flight (no overlap along strip and 15% overlap between 
strips) there is no possibility to combat limitations in the Red, 
and NIR orthoimages.  Occluded areas and ghosting of building 
roofs (in the across flight direction) cannot be corrected 
adequately and the building roof structure is completely 
damaged in the areas close to strip edges. This is a major 
disadvantage in the identification and modelling of building 
roof structures. Ground control points, where available, should 
be used for the verification of the registration of the LiDAR 
point cloud and aerial images. In this approach we relied 
completely on orientation from GPS\INS data but for future 
research ground control points will be acquired and the 
accuracy of the image registration will be measured. 
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For the purpose of the NDVI image, the Red and NIR channels 
exhibit excessive tree pixels in the extremities due to tree lean 
and the structure of the resulting NDVI image will therefore not 
match the structure of the DSM.  This requires further 
investigation.  The DSM quality can also be improved by 
incorporating building foot prints if available. 
 
LiDAR and aerial images should, ideally, not be captured 
separately. Objects which exist in the images might not exist in 
the LiDAR data and it is time consuming to identify and 
separate those points, especially vehicles on roads or in parking 
areas. In addition, if the time delay is significant, the vegetation 
may change considerably. 
 
Results from the automatic and semi-automatic stages of this 
workflow are encouraging.  Limitations identified above are the 
subject of continuing research. 
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ABSTRACT: 
 
3D object extraction is one of the main interests and has lots of applications in photogrammetry and computer vision. In recent 
years, airborne laser-scanning has been accepted as an effective 3D data collection technique for extracting spatial object models 
such as digital terrain models (DTM) and building models. Data clustering, also known as unsupervised learning is one of the key 
techniques in object extraction and is used to understand structure of unlabeled data. Classical clustering methods such as k-means 
attempt to subdivide a data set into subsets or clusters. A large number of recent researches have attempted to improve the 
performance of clustering. In this paper, the boost-clustering algorithm which is a novel clustering methodology that exploits the 
general principles of boosting is implemented and evaluated on features extracted from LiDAR data. This method is a multi-
clustering technique in which At each iteration, a new training set is created using weighted random sampling from the original 
dataset and a simple clustering algorithm such as k-means is applied to provide a new data partitioning. The final clustering solution 
is produced by aggregating the weighted multiple clustering results. This clustering methodology is used for the analysis of complex 
scenes in urban areas by extracting three different object classes of buildings, trees and ground, using LiDAR datasets. Experimental 
results indicate that boost clustering using k-means as its underlying training method provides improved performance and accuracy 
comparing to simple k-means algorithm. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Airborne laser scanning also known as LiDAR has proven to be 
a suitable technique for collecting 3D information of the ground 
surface. The high density and accuracy of these surface points 
have encouraged research in processing and analyzing the data 
to develop automated processes for feature extraction, DEM 
generation, object recognition and object reconstruction. In 
LiDAR systems, data is collected strip wise and usually in four 
bands of first and last pulse range and intensity (Arefi et al, 
2004). Clustering is a method of object extraction and its goal is 
to reduce the amount of data by categorizing or grouping 
similar data items together. It is known as an instance of 
unsupervised learning (Dulyakarn and Rangsanseri, 2001). The 
grouping of the patterns is accomplished through clustering by 
defining and quantifying similarities between the individual 
data points or patterns. The patterns that are similar to the 
highest extent are assigned to the same cluster. Generally, 
clustering algorithms can be categorized into iterative square-
error partitional clustering, hierarchical clustering, grid-based 
clustering and density-based clustering (Pedrycz, 1997; Jain et 
al., 2000).  
 
The most well-known partitioning algorithm is the k-means 
which is a partitional clustering method so that the data set is 
partitioned into k subsets in a manner that all points in a given 
subset are closest to the same center. In other words, it 
randomly selects k of the instances to represent the clusters. 
Based on the selected attributes, all remaining instances are 
assigned to their closer center. K-means then computes the new 
centers by taking the mean of all data points belonging to the 

same cluster. The operation is iterated until there is no change 
in the gravity centers. If k cannot be known ahead of time, 
various values of k can be evaluated until the most suitable one 
is found. The effectiveness of this method as well as of others 
relies heavily on the objective function used in measuring the 
distance between instances. The difficulty is in finding a 
distance measure that works well with all types of data (Jane 
and Dubes, 1995). Some attempts have been carried out to 
improve the performance of the k-means algorithm such as 
using the Mahalanobis distance to detect hyper-ellipsoidal 
shaped clusters or using a fuzzy criterion function resulting in a 
fuzzy c-means algorithm (Bezdek and Pal, 1992). A few authors 
have provided methods using the idea of boosting in clustering 
(Frossyniotis et al., 2004; Saffari and Bischof, 2007; Liu et al., 
2008).  
 
1.1 Related Work 

Boosting is a general and provably effective method which 
attempts to boost the accuracy of any given learning algorithm 
by combining rough and moderately inaccurate classifiers 
(Freund and Schapire, 1999). The difficulty of using boosting in 
clustering is that in the classification case it is straightforward 
whether a basic classifier performs well with respect to a 
training point, while in the clustering case this task is difficult 
since there is a lack of knowledge concerning the label of the 
cluster to which a training point actually belongs (Frossyniotis 
et al., 2004). The authors in (Frossyniotis et al., 2004) used the 
same concept, by using two different performance measures for 
assessing the clustering quality. They incorporated a very 
similar approach used in the original Discrete AdaBoost 
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(Freund and Schapire, 1996) for updating the weights and 
compared the performance of k-means and fuzzy c-means to 
their boosted versions, and showed better clustering results on a 
variety of datasets. (Saffari and Bischof, 2007) provided a 
boosting-based clustering algorithm which builds forward 
stage-wise additive models for data partitioning and claimed 
this algorithm overcomes some problems of Frossyniotis et al 
algorithm (Frossyniotis et al., 2004). It should be noted that the 
boost-clustering algorithm does not make any assumption about 
the underlying clustering algorithm, and so is applicable to any 
clustering algorithm.  
 
However, most of the above methods are provided and 
evaluated on artificial or standard datasets with small sizes and 
the significance of improvement in object extraction using this 
method is not evaluated in urban areas. In this paper, the boost-
clustering method is implemented and evaluated on two subsets 
of LiDAR data in an urban area. The results are then provided 
in the form of error matrix and some quality analysis factors 
used for the analysis of classification performance, and 
compared to the results of the core algorithm in boosting, 
simple k-means.  
 
 

2. BOOSTING ALGORITHM 

Boosting is a general method for improving the classification 
accuracy of any classification algorithm. The original idea of 
boosting was introduced by (Kearns and Valiant, 1998). 
Boosting directly converts a weak learning model, which 
performs just slightly better than randomly guessing, into a 
strong learning model that can be arbitrarily accurate. In 
boosting, after each weak learning iteration, misclassified 
training samples are adaptively given high weights in the next 
iteration. This forces the next weak learner to focus more on the 
misclassified training data. Because of the good classification 
performance of AdaBoost, it is widely used in many computer 
vision problems and some promising results have been obtained 
(Li et al., 2004). A few attempts have been accomplished to 
bring the same idea to the clustering domain.  
 
2.1 Boosting Clustering 

Boost-clustering is an ensemble clustering approach that 
iteratively recycles the training examples providing multiple 
clusterings and resulting in a common partition (Frossyniotis et 
al., 2004). In ensemble approaches, any member of the 
ensemble of classifiers are trained sequentially to compensate 
the drawbacks of the previously trained models, usually using 
the concept of sample weights. It is sometimes considered as a 
classifier fusion method in decision level. At each iteration, a 
distribution over the training points is computed and a new 
training set is constructed using random sampling from the 
original dataset. Then a basic clustering algorithm is applied to 
partition the new training set. The final clustering solution is 
produced by aggregating the obtained partitions using weighted 
voting, where the weight of each partition is a measure of its 
quality (Frossyniotis et al., 2004). Another major advantage of 
boost clustering is that its performance is not influenced by the 
randomness of initialization or by the specific type of the basic 
clustering algorithm used. In addition, it has the great advantage 
of providing clustering solutions of arbitrary shape though 
using weak learning algorithms that provide spherical clusters, 
such as the k-means. It is because the basic clustering method 
(k-means) is parametric, while the boost-clustering method is 
nonparametric in the sense that the final partitioning is specified 

in terms of the membership degrees 
jih ,
 and not through the 

specification of some model parameters.  
 
This fact gives the flexibility to define arbitrarily shaped data 
partitions (Frossyniotis et al., 2004). 
 
The utilized algorithm is summarized below (Frossyniotis et al., 
2004): 

1. Input: Dataset   d
iN xxx ,,...,1

, number of clusters 

(C) and maximum number of Iterations (T), Initialize 

Nwi 11    

2. for t=1to T 
a. produce a bootstrap replicate of original dataset 
b. apply the k-means algorithm on dataset to produce 

the cluster hypothesis  t
Ci

t
i

t
i

t
i hhhH ,2,1, ,...,,   where 

1,ih is the membership of instance i to cluster j 

c. if t>1, renumber the cluster indices of tH  according 
to the results of previous iteration 

d. calculate the pseudo-loss 
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h. compute the aggregate cluster hypothesis: 
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             (3) 

 
3. Output the final cluster hypothesis T

ag
f HH    

In the above algorithm, a set X of N dimensional instances xi, a 
basic clustering algorithm (k-means) and the desired number of 
clusters C are first assumed. At each iteration t, the clustering 
result will be denoted as tH , while T

agH  is the aggregate 

partitioning obtained using clustering of previous iteration. 
Consequently, at the final step, fH is will be equal to T

agH . In 

this algorithm, at each iteration t, a weight t
iw  is computed for 

each instance ix  such that the higher the weight the more 

difficult is for ix  to be clustered. At each iteration t, first a 

dataset tX  is constructed by sampling from X using the 
distribution tW  and then a partitioning result tH  is produced 
using the basic clustering algorithm. In the above methodology 
an index t

iCQ  is used to evaluate the clustering quality of an 

instance ix  for the partition tH . In our implementation, index 

CQ is computed using equation 4. 
 

 t
badi

t
goodi

t
i hhCQ ,,1    (4) 

where  
t

goodih ,
 = the maximum membership degree of xi to a cluster. 

t
badih ,

 = the minimum membership degree to a cluster. 
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Here, the membership degree 

jih ,
 for every instance xi to 

cluster j, is produced based on the Euclidean distance d: 
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where  

d
j   = cluster center.  

At each iteration, the boost-clustering algorithm clusters data 
points that were hard to cluster in previous iterations. An 
important issue to be addressed here and that is the cluster 
correspondence problem between the clustering results of 
different iterations (Frossyniotis et al., 2004). 
 
2.2 Feature Extraction 

The first step in every clustering process is to extract the feature 
image bands. These features must contain useful information to 
discriminate between different regions of the surface. In our 
experiment we have used two types of features: 

- The filtered first pulse range image using gradient 
- Opening filtered last pulse range image 
 

By our experiments, these two features have enough 
information to extract our objects of interest. 

 
The normalized difference of the first and last pulse range 
images (NDDI) is usually used as the major feature band for 
discrimination of the vegetation pixels from the others. 
However, building boundaries also show a large value in this 
image feature. It is because when the laser beam hits the 
exposed surface it will have a footprint with a size in the range 
of 15-30 cm or more. So, if the laser beam hits the edge of a 
building, then part of the beam footprint will be reflected from 
the top roof of the building and the other part might reach the 
ground (Alharthy and Bethel, 2002). The high gradient response 
on building edges was utilized to filter out the NDDI image 
using equation 6. 
 

LPRFPR
LPRFPRNDDI





            

(6) 

 
if gradient  threshold, then (FPR-LPR) = 0.0 

 
where 
FPR = first-pulse range image data 
LPR = last-pulse range image data 
 
The gradient of an image is calculated using equation 7: 
 

   22)( imageGimageGimageG yx      (7) 

where 
Gx = gradient operators in x direction. 
Gy = gradient operators in y direction. 
 
The morphology Opening operator is utilized to filter elevation 
space. This operator with a flat structuring element eliminates 
the trend surface of the terrain. The main problem of using this 
filter is to define the proper size of the structuring element 
which should be big enough to cover all 3D objects which can 

be found on the terrain surface. The Opening operation is 
defined by: 
 

  BBABA            (8) 
where 

  AABxBA x  ˆ|                 (9) 

 
is the morphological Dilation of set A with structure element B. 
And  
 

 ABxBA x  |          (10) 

 
is the morphological Erosion of set A with structure element B 
(Gonzalez and Woods, 2006). 
 
2.3 Quality Analysis 

Comparative studies on clustering algorithms are difficult due 
to lack of universally agreed upon quantitative performance 
evaluation measures (Jain et al., 1999). Many similar works in 
the clustering area use the classification error as the final 
quality measurement; so in this research, we adopt a similar 
approach.  
 
Here, we use error matrix as main evaluation method of 
interpretation result. Each column of this matrix indicates the 
instances in a predicted class. Each row represents the instances 
in an actual class. All the diagonal variants refer to the correct 
interpreted numbers of different classes found in reality. Some 
measures can be derived from the error matrix, such as producer 
accuracy, user accuracy and overall accuracy (Liu et al, 2007).  
 
Producer Accuracy (PA) is the probability that a sampled unit 
in the image is in that particular class. User Accuracy (UA) is 
the probability that a certain reference class has also been 
labelled that class. Producer accuracy and user accuracy 
measures of each class indicate the interpretability of each 
feature class.  We can see the producer accuracy and user 
accuracy of all the classes in the measures of “producer overall 
accuracy” and “user overall accuracy”.  
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where 

jiN ,
 = (i,j)th entry in confusion matrix 

.iN  = the sum of all columns for row i 

jN.
is the sum of all rows for column i. 

 
“Overall accuracy” considers all the producer accuracy and user 
accuracy of all the feature classes. Overall accuracy yields one 
number of the whole error matrix. It‘s the sum of correctly 
classified samples divided by the total sample number from user 
set and reference set (Liu et al, 2007). 
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Another factor can be also extracted from confusion matrix to 
evaluate the quality of classification algorithms, which is K-
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qualifier used to quantify the suitability of the whole clustering 
method. 
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where 
k = number of clusters 

3. EXPERIMENTAL RESULTS 

In this research, we have used two subsets of LiDAR data 
recorded from the city of Stuttgart, Germany. This data is 
recorded in four bands of first and last pulse range and 
intensity. The pixel size of this data is 30 cm. This means the 
average density of the recorded 3D points which is close to 9 
per meter. 

Figure 1. Datasets used in our research. a) first pulse range of the first dataset, b) last pulse range of the first dataset, c) digital aerial 
image of the first dataset, d) first pulse range of the second dataset, e) last pulse range of the second dataset, f) digital aerial image of 

the second dataset 

For better understanding of the objects, digital color (RGB) 
images have been also captured from this area using a medium 
format digital areal camera. In figure 1, color-coded first and 
last pulse images and also the RGB images of the investigated 
areas are illustrated. The trees can be distinguishes by 
comparing first and last pulse images. 
 
3.1 Results of Feature Extraction Algorithms 

The level of the discrepancy between first and last return 
heights before and after applying the gradient filter is shown in 
figures 2, 3 for our two datasets. The discrepancy was larger 
than zero in the tree regions as expected. 
 

 
a b 

 Figure 2. The normalized difference of the first and last pulse 
range images for our first dataset. a) before gradient filtering, 

b) after gradient filtering 
 
 
 

 

a b 
Figure 3. The normalized difference of the first and last pulse 

range images for our second dataset. a) before gradient filtering, 
b) after gradient filtering 

 
The feature image of applying the morphological operator on 
last pulse range image with 5*5 structuring element is 
illustrated in figure 4. Here, the size of structuring element is 
selected by experiments on these two datasets. 

 

  
a b c 

  
d e f 
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a b 

Figure 4. Applying morphological opening operator with 
structuring element of size 5*5 to last pulse range images. a) the 

first dataset, b) the second dataset 
 
3.2 Evaluation of the Clustering Results 

The results of k-means and boost k-means clustering algorithms 
applied to features of our two datasets are shown in figure 5 and 
figure 6. In our experiments the cluster number is considered 
fixed and equal to 3 because our objects of interest in urban 
areas are bare earth (blue), vegetation (green) and buildings 
(red). For the creation of confusion (error) matrix, first, the 
ground truth (also known as reference clustering results) should 
be defined. For this, 3D vectors of these areas consist of 
vegetation and building areas are used. The areas of polygons in 
pixel unit (number of pixels in the vector polygons of objects) 
are used as the values of reference clusters in error matrices. 
The user values are computed by counting the number of truly 
clustered patterns inside the polygons.  
 

 
a b 

Figure 5. Overlay of reference vectors on clustering results of 
first dataset. a) result of k-means algorithm, b) result of boost k-

means algorithm. 
 

 
a b 

Figure 6. Overlay of reference vectors on clustering results of 
second dataset. a) result of k-means algorithm, b) result of boost 

k-means algorithm. 
On the first view, both clustering algorithms provide reasonable 
classes of vegetation, buildings and ground but an accurate and 
numerical comparison will be carried out comparing the true 
object elements in the areas of interest. 

 

In Tables 1, 2, the confusion matrices contain the number of 
pixels assigned to each cluster in the results of k-means 
clustering is provided. The confusion matrices and NMI factor 
of the results of boost k-means algorithm are also given in 
Tables 3, 4. 
 
Table 1.  Error matrix and quality factors of k-means clustering 

applied to first dataset. 

Error Matrix 
Reference Map 

Building Tree Ground 

R
es

ul
ts

 Building 34077 41 975 
Tree 205 6844 1178 

Ground 7946 2197 65607 

 
Producer Accuracy 80.7% 75.4% 96.8% 
Producer Accuracy 97.1% 83.2% 86.6% 
Overal Accuracy 89.5% 

K-factor 0.801 
 

Table 2.  Error matrix and quality factors of k-means clustering 
applied to second dataset. 

Error Matrix 
Reference Map 

Building Tree Ground 

R
es

ul
ts

 Building 58393 120 1858 
Tree 261 9808 1810 

Ground 10025 3809 68570 

 
Producer Accuracy 85.0% 71.4% 94.9% 
Producer Accuracy 96.7% 82.6% 83.2% 
Overal Accuracy 88.4% 

K-factor 0.798 
 
 

It should be noted that the confusion matrix is should be 
diagonal in the ideal case. According to the above confusion 
matrices and NMI factors and also visual interpretation, 
improvement in results of clustering using boosting method is 
obvious for our classes of interest in theses datasets.  
 

Table 3. Error matrix and quality factors of boost k-means 
clustering applied to first dataset.  

Error Matrix 
Reference Map 

Building Tree Ground 

R
es

ul
ts

 Building 39378 77 1895 
Tree 303 7757 1997 

Ground 2547 1248 63868 

 
Producer Accuracy 93.2% 85.4% 94.2% 
Producer Accuracy 95.2% 77.1% 94.4% 
Overal Accuracy 93.2% 

K-factor 0.876 
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Table 4.  Error matrix and quality factors of boost k-means 
clustering applied to second dataset. 

Error Matrix 
Reference Map 

Building Tree Ground 

R
es

ul
ts

 Building 61027 212 1393 
Tree 428 10701 1178 

Ground 7224 2824 69667 

 
Producer Accuracy 88.9% 77.9% 96.45 
Producer Accuracy 97.4% 86.9% 87.4% 
Overal Accuracy 91.4% 

K-factor 0.850 
 
 

4. SUMMARY 

In this research a boost clustering methodology was applied on 
two datasets of LiDAR data in an urban area. The proposed 
method is a multiple clustering method based on the iterative 
application of a basic clustering algorithm. We evaluated this 
algorithm using two datasets, to investigate if this algorithm can 
lead to improved quality and robustness of performance. For the 
quality analysis of data clustering we used Some quality 
analysis factors such as produces, user and overall accuracy  
between the true labels and the labels returned by the clustering 
algorithms as the quality assessment measure. The experimental 
results on LiDAR datasets have shown that boost clustering 
algorithm can lead to better results compared to the solution 
obtained from the basic algorithm. The usefulness of the two 
feature channels Gradient Filtered NDDI and Opening of Last 
Pulse Range image for separating vegetation region with 3D 
extend and building regions from background has been also 
shown by the experiments.  
 
There are also several directions for future work in this area. 
The most important is to determine the optimal number of 
clusters existing in the dataset. Other interesting future research 
topics concern the definition of best features of LiDAR data for 
data clustering and also using digital aerial and intensity images 
as well as the experimentation with other types of basic 
clustering algorithms and comparing the results of boost 
clustering with other strong clustering methods such as fuzzy k-
means and neural networks or other multiple clustering based 
approaches.  
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ABSTRACT:

In this paper, we address the problem of generating building footprints using terrestrial laser scanning from a Mobile Mapping System
(MMS). The MMS constitutes a fast and adapted tool to extract precise data for 3D city modeling. Urban environments evolve over
time due to human activities and other factors. Buildings are constructed or destroyed and the urban areas are extended. Therefore, the
structures of the cities are constantly modified. Currently, building footprints can be generated using aerial data. However, aerial based
footprints lack precision due to the nature of the data and to the associated extraction methods. The use of MMS is proposed as an
alternative to perform this complex task. In this work, we propose an operational approach for automatic extraction of accurate building
footprints. We describe the challenges associated with the terrestrial laser raw data acquired in realistic and dense urban environments.
After a filtering stage on the 3D laser cloud point, we extract and reconstruct the dominant facade planes by combining the Hough
transform, the k-means clustering algorithm and the RANSAC method. The building footprint is then estimated from these dominant
planes. Preliminary experimental results are presented and discussed. The assessments show that this approach is very promising for
the automation of building footprints extraction.

1 INTRODUCTION

Nowadays, city modeling has become an important subject of
research for architectural lasergrammetry, photogrammetry and
computer vision communities. There is an increasing need for
3D building descriptions in urban areas in several fields of ap-
plication like city planning and virtual tourism. Therefore many
research activities on city modeling have focused on the auto-
matic generation of 3D building models from aerial images. Most
pipelines which have been developed recover the 3D shape of
roof surfaces, but building ground footprints come from existing
databases acquired by the digitization and vectorization of cadas-
tral maps or from surveying measurements.

Initially, the building footprints are extracted either in an auto-
matic way using the aerial data (Cheng et al., 2008), (Tarsha Kurdi
et al., 2006) or in a manual way requiring many surveyors to make
measurements in the terrain. However, these footprint databases
sometimes do not exist (e.g., in less developed countries, etc.),
can be very difficult to obtain (e.g., in areas with difficult access
or prohibited overflights), or can even be of insufficient geomet-
rical quality with respect to some applications. Moreover, the
automatic building footprints extraction using aerial images is a
hard task. Imprecise and/or incomplete focusing will affect the
modeling process in the sense that the final 3D building model
will lack accuracy and details.

Recent progress in technologies have allowed the development
and the construction of devices for rapid acquisition of 3D car-
tographic terrestrial data with very high precision in urban envi-
ronments. The Mobile Mapping System allows an easy coverage
of large scale areas such as districts and cities. The feasibility of
this kind of system has been demonstrated (Haala et al., 2008),
and the usage of this device is increasingly widespread for ap-
plications like the conservation of patrimony (Baz et al., 2008)
or visualization. Many works using terrestrial laser scanning are

particularly focused on segmenting and texturing the building fa-
cades (Boulaassal et al., 2007), (Pu, 2008).

This ground-based modeling is thus unavoidable for some ap-
plications such as facade texturing where images acquired by a
ground based system need to be registered relatively to the aerial
3D model to ensure a satisfactory mapping. Matching the street
level images with the 3D aerial model is an extremely complex
due to the generalization problems. The data acquired by ground-
based 3D data collection systems, can be used to extract and
model facades that can advantageously replace the ground foot-
prints in the aerial reconstruction process, thus leading to a co-
herent use of both aerial and terrestrial data.

This paper focuses on the first step of a global 3D facade recon-
struction framework, i.e. the extraction of the facade footprints
and planes. The MMS constitutes an alternative and reliable tool
which can be useful to obtain building footprints with very high
accuracy and details. The aim of this study is to propose an oper-
ational approach for automated building footprints extraction in
urban environments. The remainder of the paper is organized as
follows: Section 2 states the problems related to the raw laser data
and their processing. Section 3 presents the proposed approach
for extracting the building’s footprints and facade planes. Section
4 gives some promising experimental results.

2 OVERVIEW ON PROBLEMS RELATED TO THE
LASER RAW DATA AND THEIR PROCESSING

In this study, we use a mobile mapping system for acquiring geo-
referenced 3D laser point clouds. The Terrestrial Laser Scanning
system (TLS system) is a 2D profile scanner. The third dimension
is induced by the vehicle displacement. In addition to this, the
Mobile Mapping System is equipped with a Global Positioning
System (GPS), an Inertial Measurement Unit (IMU) and a Dis-
tance Measuring Instrument (DMI), namely an odometer. This
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equipment was precisely installed by topometry. It allows the
gathering of georeferenced 3D laser data with a very high density
and also much information about the acquisition (see section 4).

Figure 1: Visualization of the 3D point cloud of very high den-
sity. This raw data represents the building facade acquisition. The
black line represents the trajectory of the laser sensor.

The laser data are acquired under realistic conditions in dense
urban environments. Moreover, the datasets are collected in a
particular container related to the laser scanner, particularly in a
range of 3D points. In this context, the data must be manipulated
with much precaution. Here we will describe the main difficulties
associated with 3D data.

• The acquisition: The laser sensor data can be represented
in two ways; either as a container with data organized lin-
early in temporal sequences of 201 points (data frames) or
like a cloud of 3D points (georeferenced data). The condi-
tions of acquisition are very variable in realistic and dense
urban environments. Mobile objects cause a thickening of
the acquired cloud when the vehicle stops. Certain acquired
points model an ephemeral surface and could be considered
as erroneous points. Moreover, the density of the facades
vary according to the speed of the vehicle.

• The occlusions: pose a problem for the complete acquisi-
tion of building facades in urban environments. The occlu-
sions could be caused by two categories of obstacles, static
or dynamic created by man-made and natural objects. The
raw cloud may suffer from missing data due to the pres-
ence of pedestrians, trees, mobile and parked vehicles and
many others objects (see figure 2). Alas, this inevitable phe-
nomenon affects the modeling process.

• The laser reflectance: could cause confusions in the 3D
data interpretation. Certain points don’t model a physical
surface. This effect appears on a retroreflector surface. Ob-
servations sometimes show an aureole of points around road
signs. These dispatched points represent erroneous data.
Moreover, certain points model a different surface other than
the surface of interest. Sometimes, the beam of the laser ei-
ther rebounds off of the outside of the window or it passes
through the window and models the inside of the dwelling.
These scattered points represent erroneous information for
the facades modeling. In addition to this, other less frequent
effects could arise due to poorly reflective surfaces.

• The redundancy of data: is due to many factors. The ac-
quisition is continuous even when the vehicle is stopped.
We have adopted this strategy to facilitate the acquisition of
a large area and to use data as common bases for our dif-
ferent projects. Therefore, raw laser data may contain many

redundant frames. Moreover, due to sensor characteristics
(orientation and linear scanning), we could sometimes have
up to three acquisitions of the same facade part caused by
the graining of the laser beam in the turns. The redundancy
of data (points, frames, parts of the facade) presents an in-
convenience for the feature extraction techniques based on
vote schemes or random trials.

Figure 2: A street in the city of Paris. The building facade is
partially occluded by trees and parked vehicles.

Figure 3: Returned intensities of the 2D scans. The redundancy
effect appears when the vehicle temporarily stops. The vehicle
and the branches seem stretched.

This brief description allows us to acknowledge several problems
associated with the raw laser data. The 3D data should undergo
several preprocessing steps before becoming exploitable. Thus
we need a process robust to some outliers and noisy data.

3 PROPOSED APPROACH

In this section, we describe our approach which consists of two
stages. The first stage focuses on the 3D cloud points preprocess-
ing. The second stage aims at the building footprint extraction.
In this work, we assume that buildings have simple polygonal
shapes.

3.1 3D data preprocessing

3.1.1 Partial filtering of redundant points As we have men-
tioned earlier, the laser sensor constantly sweeps the building fa-
cade even when the vehicle is stopped. Consequently, the ac-
quired raw data may contain many redundant frames due to this
continuous acquisition. For this reason, we have defined a mea-
sure between two consecutive frames based on point-to-point dis-
tances. The redundant frames are thus detected and removed from
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Figure 4: Data flow diagram of the building footprint extraction
approach.

the dataset by thresholding these distances. Moreover, this tem-
poral effect distinctly appear on the image of intensity of the laser
beam and looks like a succession of rows having the same inten-
sity (see figure 3). Therefore detecting redundant frames can also
be based on differences between the intensity of return of two
consecutive rows. This step solves only the problem of data re-
dundancy related to the sensor immobility.

3.1.2 Volume of interest The sensor characteristics are used
to select the 3D points belonging to the facade plane. The 3D
available points are principally positioned above the vehicle to
reduce the problem of occlusions. A horizontal band is defined
between two horizontal planes. The lower plane passes through
the sensor center. The upper plane is shifted by a certain dis-
tance that is related to the height of the buildings under study. We
precise that the ground altitude could be simply deduced by mea-
suring manually the laser sensor height. Finally, the volume of
interest is defined by the georeferenced trajectory of the vehicle
and the above horizontal band. The 3D points not included in this
volume will be removed from the dataset.

3.1.3 Exploiting the linearity of 3D data After the preced-
ing filtering steps, the frames have undergone a horizontal crop-
ping. The data structure represented by frames is now repre-
sented by a sequence of 3D points. We exploit the fact that in
this representation facade points are locally aligned. We seek fa-
cade points which are principally organized vertically. Thus, the
dataset in this sequence is parsed by triplets. The central point
of each triplet is kept in the dataset if the triplet is aligned, other-
wise it will be removed from the dataset. Therefore, the coplanar
points of the building facade are kept. Besides, we observe that
the 3D points belonging to other linear structures are also kept.

3.1.4 Mapping the 3D point cloud onto a 2D accumulator
The goal of this step is twofold. Firstly, it aims at removing noisy
and outlier points. Secondly, it gives a very compact representa-
tion of the filtered 3D points. Since we are interested in the verti-
cal structures that generally represent the facades, we project the
3D cloud on a horizontal plane. More precisely, the 3D points are
projected into a 2D grid to create an accumulation space. Each
point of the cloud votes in one cell, giving a score. Only cells

having a high score are kept. The process uses a global threshold
which is compared to the maximum score. By this technique, the
erratic points of the cloud are removed from the data. The cells
with high scores are principally facade points with high density.

Several techniques for the detection of outliers in laser point clouds
can be found in (Sotoodeh, 2006) and (Sotoodeh, 2007).

3.2 Building footprints extraction

Figure 5: The main steps of our proposed approach for building
footprint extraction.

The goal is to automatically extract the building footprint using
the 3D filtered points cloud contained in the compact 2D accumu-
lator. The building footprint is a set of 2D segments that can be
detected in this 2D space. Recall that the vertical structure of the
facades is captured by the scores of the cells. Each cell contains,
if any, a set of 3D points P (x,y,z). Furthermore, an efficient
extraction can be obtained by working with the barycenters (2D
coordinates) of the cells together with their scores. Our approach
combines the use of the counting space of Hough Transform, the
k-means clustering technique and the RANSAC method. We
briefly describe these three techniques and their properties ap-
plied in our context. Figure 5 illustrates the main extraction steps.

The Standard Hough Transform (SHT) allows the extraction of
the 2D lines among 2D dataset points (Hough, 1962). In the
field of our application, this method is currently used to detect
the building boundaries in aerial images using the edge points.
This method is also used to extract buildings in LIDAR data (e.g.,
(Tarsha Kurdi et al., 2007) and (Karsli and Kahya, 2008)).
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In our approach, we only use the voting steps associated with the
Hough transform. We describe briefly here the principle. We
made a Hough accumulation space in the discretized parameter
space ρ and θ. Each 3D point P (x,y,z) of the dataset (facade
points) votes in all cells of the Hough space accumulation verify-
ing the following constraint:

ρ = x · cos θ + y · sin θ (1)

where ρ is a length of the normal of the line to the origin and θ is
the orientation associated to the normal vector. Each couple (ρ,θ)
is unique if θ ∈[0,2π] and ρ ≥ 0.

The cells containing a high score correspond more or less to a
facade. However, we aim at determining precisely and automati-
cally the best fit lines of points characterizing the building facades
(see figure 6). In our case, we do not carry out the lines extrac-
tion step that is based on the local maxima values of the Hough
accumulation space since this requires a very difficult tuning of
some parameters.

Figure 6: The usage of the Hough transform for extracting build-
ing facade lines when the different facades have similar densities.

The local maxima often provide approximate or erroneous so-
lutions. Any partially occluded facade has a low density of 3D
points and has thus a low vote in the Hough counting space com-
pared to the non-occluded facade. For this reason, if the vote
threshold is too low, many lines will be extracted. Inversely, if
the threshold is too high, many lines could be missed. In addition
to this, the line estimation depends also on the discretization steps
of ρ and θ values. Close lines characterizing the approximation
of the same potential line are sometimes extracted. The usage of
a large neighborhood to determine the local maxima in the Hough
space could reduce this effect. Nevertheless, tuning the threshold
is a very difficult task in many cases.

We remind that our approach deals with buildings having sim-
ple polygonal footprints. The discretization steps depend also of
the building characteristics. The ρ step is related to the minimal
distance defined between two facades planes with a similar orien-
tation, the θ step is related to the minimal angle defined between
two adjacent facades.

In the urban context, certain characteristics of the building fa-
cades are a priori known. The number of facades of the buildings
is known in advance (between 3 and 10). Our idea is to use a k-
means clustering algorithm to replace the detection of local max-
ima in the accumulation space—the parameter space of θ and ρ

values, in order to automatically determine the exact number of
facades and their support 2D lines.

The k-means algorithm is a well-known unsupervised clustering
method commonly used to cluster n objects of the input dataset
into k homogeneous partitions, k<n, for example (Forgy, 1965)
and (Macqueen, 1967). We use this technique in a classic way.
Nevertheless, several other various clustering techniques exist and
a survey is found in (Xu and Wunsch, 2005). Mathematically, the
k clusters are determined by minimizing an objective function
such as the sum of the squared distances between the points and
the corresponding centroids such as:

intra distance =

k∑
i=1

∑
Pm∈Si

((ρ, θ)(Pm) − (ρ̄i, θ̄i))
2 (2)

where (ρ, θ)(Pm) is the value of (ρ, θ) associated with all 3D
points Pm(xm, ym, zm) included in the corresponding cell, k is
the number of clusters Si, i = 1, 2, . . . , k, and (ρ̄i, θ̄i) is the cen-
troid of the cluster Si. The above score is simply the intra-cluster
distance measure. More specifically, the score is calculated only
for the cells containing a strictly positive vote in the Hough space.
Besides, the sum in the above equation is carried out for all 3D
point candidates even if they vote all in the same cell.

We can also measure the inter-cluster distance, or the distance
between clusters, which we want to be as big as possible. This
measure is given by

inter distance = min((ρ̄j , θ̄j)− (ρ̄i, θ̄i))
2, i 6= j (3)

Since we want both of these measures to help us determine if we
have a good clustering, i.e., a clustering which results in compact
clusters which are well separated, we must combine them in some
way. The obvious way is to minimize the following objective
function:

validity =
intra distance

inter distance
(4)

In our case, the k-means algorithm is run for each k value belong-
ing to the predefined interval. Each run provides a score based on
(4). The potential number of facades is the k value corresponding
to the minimum of these scores. This validity measure for the de-
termination of the number of clusters in k-means clustering was
proposed in (Ray and Turi, 1999). Thus the number of facades
could be known even when the facades have heterogeneous den-
sities of 3D points.

More precisely, when one run is carried out for a given k, the al-
gorithm is not guaranteed to return the global optimum because
the convergence depends on the initial seeds selected. The k-
means algorithm is extremely fast. For this reason, a method
which is commonly employed is to run the algorithm several
times and select the best clustering available for each k-value.
In our case, the first run is carried out by setting the initial seeds
to the local maxima in the Hough counting space. The other runs
are randomly initialized inside the Hough counting space.

Now that the number of clusters k is known, one can compute
a 2D line solution (facade support) for each detected cluster of
points. Several solutions can be used to model the facade such
as the use of the centroid of each cluster, or the solution with the
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highest vote for each cluster. We propose to employ a more accu-
rate method such as the RANSAC method to model the building
footprint. One advantage of our approach is the following. A
curved facade will be approximated by a single line. In addition
to this, much information deduced by the clustering step allow to
automatically adjust the parameters of the RANSAC algorithm
and to thus improve the precision of the detected lines.

The RANSAC method is commonly used to detect lines among
edge points (Bretar and Roux, 2005) and (Sester and Neidhart,
2008). We use a classic method (Fischler and Bolles, 1981). For
each detected cluster, we use the following process. We use the
original space of parameter (x,y). Two different points belong-
ing to the cluster are randomly selected, characterizing a line. A
neighborhood is defined along this line by a minimal distance be-
tween a point and the line. This process is iteratively repeated
until the number of inlier points in the neighborhood is maxi-
mized. In our approach, the number of facade points is roughly
equal to the number of points for each cluster. Furthermore, the
minimal distance associated with the RANSAC technique can be
determined from the dispersion of the cluster. When this step
is carried out, the best fit lines of 2D points are extracted us-
ing the Least Squares Adjustment (LSA technique). A set of 2D
segments giving the building footprint is then obtained from the
detected 2D lines.

4 PRELIMINARY RESULTS

The acquired 3D data correspond to the facades of buildings in
the 12th district of the city of Paris. In this study, we use a high
precision 2D laser sensor LMS-Q120i made by RIEGL company
1. The laser sensor is positioned on the roof of the vehicle. Its
beam plane is perpendicular to the vehicle trajectory. The system
allows us to carry out 10000 measurements per second and the
beam vertically sweeps with an opening of 80 degrees (-20 to 60
degrees with respect to the horizontal). The angular precision of
the beam is equal to 0.01 degrees. More specifically, the precision
of laser-based measurements is approximately 3 cm at 150 m. In
this study, the angular resolution was configured to 201 points by
frame (see figure 7). The ground based laser range transmits laser
pulses with simple echo.

Figure 7: Acquisition of the 3D point cloud using the 2D laser
sensor. The frame shows a selected band without occlusions.

The raw measurements provided by the laser sensor are points
that are parameterized by distance and angle. The reflected in-
tensity of the laser is between 0 and 1. The coordinates of the
3D points are expressed in the laser sensor coordinate system and
also in a common coordinate system, namely the ground refer-
ence (absolute) Northern, Eastern and Altitude in Lambert 93.
The precision of a 3D point is not easy to evaluate because it
depends on the laser precision and on the referencing system pre-
cision.

1Link to RIEGL company: http://www.riegl.com

Figure 8: Two difficult facades for the classical Hough Trans-
form: i) a curved facade, and ii) a facade with a low density of
3D points. The detected lines correspond to the local maxima of
the Hough space accumulation using the filtered cloud.

The experiments are carried out on two building facades having
different architecture and different density of acquired 3D points.
One can thus assess the robustness and the efficiency of the pro-
posed approach.

Figure 9: Extracting the building footprint lines using the pro-
posed approach.

Figures 8 and 9 show the extraction of the building footprint lines
using the classical Hough Transform and our proposed approach,
respectively. The 3D point cloud is presented in the upper part of
the figure. The projection onto the 2D accumulator is presented
in the lower part of the figure. The studied building illustrates two
difficult cases for a classical Hough Transform. Indeed, the left
facade does not suffer from occlusions but it is slightly curved.
On the other hand, the right facade which is a planar structure is
partially occluded, that is, the density of its 3D points in the 2D
accumulator space is much lower than that of the left facade.

Figure 10: Comparative schema illustrating the precision of lines
detection step on one simulated facade.
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Figure 11: The application of the k-means clustering.

As can be seen, the classical Hough Transform provided many
2D lines (facade support) corresponding to the many local max-
ima in the Hough counting space. We can observe that both the
curved facade and the partially occluded facade are modelled by
several lines. However, by using our proposed approach based
on k-means clustering, the correct and accurate 2D lines were
obtained. As explained above, the 2D lines can be given either
by the centroid of the cluster, its maximum or by the RANSAC
technique. As can be seen in figure 10, the building footprint ex-
traction will be more precise using the RANSAC method. The
maximum score method detects the line comprising the maxi-
mum of points, but it is not necessarily the correct 2D line. The
information provided by the clustering method allows us to re-
fine the estimation of the facade lines by exploiting the number
of points and the dispersion if the detected cluster (facade) within
the RANSAC framework.

Figure 11 shows the application of the k-means clustering algo-
rithm on the 3D data associated with the two facades. Figure
11.(a) depicts the validity score as a function of the number of
clusters k. As can be seen the optimal value for k is 2. Figure
11.(b) shows the convergence associated with this optimum. The
footprint lines extracted from this clustering are illustrated in fig-
ure 9.

5 CONCLUSIONS AND FUTURE WORK

We presented an approach for the automatic extraction of the
building footprint in urban environments. This approach does not
require previous knowledge of the number of facades in the input
dataset. Moreover, the approach is robust to the heterogeneous
densities of facade points. The proposed approach is based on
fast filtering and feature extraction techniques. This stage consti-
tutes an essential task for 3D building modeling. Experimental
results show the feasibility and robustness of the proposed ap-
proach on small islets of buildings.

Future work may investigate the extension of the approach to
buildings with a high complexity of shapes and the possibility
of application to large areas because each islet of the buildings
is delimited by its georeferenced trajectory. Furthermore, since
outdoor squares inside the buildings are inaccessible areas for the
vehicle, we plan to extend our approach to model full buildings by
exploiting the terrestrial data and the corresponding aerial data.
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ABSTRACT: 
 
In this work, we focus on the detection of buildings, by combining information from aerial images and Lidar data. We applied four 
different methods on a dataset located at Zurich Airport, Switzerland. The first method is based on DSM/DTM comparison in 
combination with NDVI analysis (Method 1). The second one is a supervised multispectral classification refined with a normalized 
DSM (Method 2). The third approach uses voids in Lidar DTM and NDVI classification (Method 3), while the last method is based 
on the analysis of the density of the raw Lidar DTM and DSM data (Method 4). An improvement has been achieved by fusing the 
results of the different methods, taking into account their advantages and disadvantages. Edge information from images has also 
been used for quality improvement of the detected buildings. The accuracy of the building detection was evaluated by comparing the 
results with reference data, resulting in 94% detection and 7% omission errors for the building area. 
 

1. INTRODUCTION 

In this work, we focus on the building detection for airport sites. 
The acquisition of a reliable geospatial reference database of 
airports, and in particular the automatic extraction of buildings 
and obstacles at airports, both have a critical role for aviation 
safety. Often, 3D information of airports is not available, not 
accurate enough, not complete, or not updated. Thus, methods 
are needed for generation of accurate and complete 3D geodata 
with high degree of automation. In particular, buildings and 
trees are considered as obstacles, so they should be correctly 
extracted. In this work, we focus on the detection of buildings, 
as a first step for their 3D extraction. There are several methods 
applied for this purpose, based on image and/or airborne Lidar 
data. In our approach, buildings are detected in aerial images 
and Lidar data through multiple methods using multispectral 
image classification, DSM (Digital Surface Model) and DTM 
(Digital Terrain Model) comparisons and density analysis of the 
raw Lidar point cloud. The detection quality is improved by a 
combination of the results of the individual methods. This paper 
will give a brief overview of the related work on this subject. 
Then, after the description of the test area at Zurich Airport, 
Switzerland, the strategy and methodology will be presented 
and the results will be reported, compared and commented. This 
work is a part of the EU 6th Framework project PEGASE 
(Pegase, 2009). 
 

2. PREVIOUS WORK  

Aerial images and Lidar data are common sources for object 
extraction. In digital photogrammetry, features of objects are 
extracted using 3D information from image matching or 
DSM/DTM data, spectral, textural and other information 
sources. Pixel-based classification methods, either supervised or 
unsupervised, are mostly used for land-cover and man-made 
structure detections. For the classical methods e.g. minimum-
distance, parallelepiped and maximum likelihood, detailed 
information can be found in (Lillesand and Kiefer, 1994). 
 

In general, the major difficulty in using aerial images is the 
complexity and variability of objects and their form, especially 
in suburban and densely populated urban regions (Weidner and 
Foerstner, 1995). 
 
Regarding Lidar, building and tree extraction is basically a 
filtering problem in the DSM (raw or interpolated) data. Some 
algorithms use raw data (Sohn and Dowman, 2002; Roggero, 
2001; Axelsson, 2001; Vosselman and Maas, 2001; Sithole, 
2001; Pfeifer et al., 1998), while others use interpolated data 
(Elmqvist et al., 2001; Brovelli et al., 2002; Wack and Wimmer, 
2002). The use of raw or interpolated data can influence the 
performance of the filtering. The algorithms differ also in the 
number of points they use at a time. In addition, every filter 
makes an assumption about the structure of bare-earth points in 
a local neighbourhood. This assumption forms the concept of 
the filter (Sithole and Vosselman, 2003). The region-based 
methods use mostly segmentation techniques, like in Brovelli et 
al. (2002), or using Hough transformation (Tarsha-Kurdi et al., 
2007). Some researchers use 2D maps as prior information for 
building extraction (Brenner, 2000; Haala and Brenner., 1999; 
Durupt and Taillandier, 2006; Schwalbe et al., 2005). 
Topographic maps provide outlines, classified polygons and 
topologic and 2D semantic information (Elberink and 
Vosselman, 2006).  
 
In general, in order to overcome the limitations of image-based 
and Lidar-based techniques, it is of advantage to use a 
combination of these techniques. Sohn and Dowman (2007) 
used IKONOS images to find building regions before extracting 
them from Lidar data. Straub (2004) combines information 
from infrared imagery and Lidar data to extract trees. 
Rottensteiner et al. (2005) evaluate a method for building 
detection by the Dempster-Shafer fusion of Lidar data and 
multispectral images. They improved the overall correctness of 
the results by fusing Lidar data with multispectral images.  
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Few commercial software packages allow automatic terrain, 
tree and building extraction from Lidar data. In TerraSCAN, a 
TIN is generated and progressively densified, the extraction of 
off-terrain points is performed using the angles between points 
to make the TIN facets and the other parameter is the distance 
to nearby facet nodes (Axelsson, 2001). In SCOP++, robust 
methods operate on the original data points and allow the 
simultaneous elimination of off-terrain points and terrain 
surface modelling (Kraus and Pfeifer, 1998).  
 
In summary, most approaches try to find objects using single 
methods. In our strategy, this study suggests complying 
different methods using all available data with the focus on 
improving the results of one method by exploiting the results 
from the remaining ones.   
 

3. INPUT DATA AND PREPROCESSING 

The methods presented in this paper have been tested on a 
dataset of the Zurich airport. The available data for this region 
are: 3D vector data of airport objects, colour and CIR (Colour 
InfraRed) images, Lidar DSM/DTM data (raw and grid 
interpolated). The characteristics of the input data can be seen 
in Table 1. 
 

Image Data RGB CIR 
Provider Swissphoto Swissphoto 
Scale 1: 10‘000 1: 6‘000 
Scan Resolution 14.5 microns 14.5 microns 
Acquisition Date July 2002 July 2002 
Ground Sampling Distance 
(GSD) (cm) 14.5 cm 8.7 cm 
Lidar Data DSM DTM 
Provider Swisstopo Swisstopo 
Type Raw & grid Raw & grid 
Raw point density  &  Grid 
Spacing 

1 pt / 2 sqm & 
2m 

1 pt / 2 sqm & 
2m 

Acquisition Date Feb. 2002 Feb. 2002 
Vector data Only for validation purposes  
Provider Unique Co.  
Horizontal / Vertical 
Accuracy (2 sigma) 20 / 25 cm  

Table 1. Input data characteristics. 
 
The 3D vector data describe buildings (including airport 
parking buildings and airport trestlework structures). It has been 
produced from stereo aerial images using the semi-automatic 
approach with the CC-Modeler software (Gruen and Wang, 
1998). Some additional reference buildings outside the airport 
perimeter were collected using CIR images with stereo 
measurement by using LPS software. The images have been 
firstly radiometrically preprocessed (noise reduction and 
contrast enhancement), then the DSM was generated with the 
software package SAT-PP, developed at the Institute of 
Geodesy and Photogrammetry, ETH Zurich (Zhang, 2005). For 
the selection of the optimum band for matching, we considered 
the GSD, and the quality of each spectral channel based on 
visual checking and histogram statistics. Finally, the NIR band 
was selected for DSM generation. The final DSM was 
generated with 50cm grid spacing. Using this DSM, CIR 
orthoimages were produced with 12.5cm ground sampling 
distance. Lidar raw data (DTM and DSM) have been acquired 
with “leaves off”. The DSM point cloud includes all Lidar 
points (including points on terrain, tree branches etc.). The 
DTM data includes only points on the ground, so it has holes at 
building positions and less density at tree positions. The height 
accuracy (one standard deviation) is 0.5 m generally, and 1.5 m 

at trees and buildings, the latter referring only to the DSM. The 
grid DSM and DTM were interpolated from the original raw 
data by Swisstopo with the Terrascan commercial software. 
 

4. BUILDING DETECTION 

Four different approaches have been applied to exploit the 
information contained in the image and Lidar data, extract 
different objects and finally buildings. The first method is based 
on DSM/DTM comparison in combination with NDVI 
(Normalised Difference Vegetation Index) analysis for building 
detection. The second approach is a supervised multispectral 
classification refined with height information from Lidar data 
and image-based DSM. The third method uses voids in Lidar 
DTM and NDVI classification. The last method is based on the 
analysis of the density of the raw DSM Lidar data. The 
accuracy of the building detection process was evaluated by 
comparing the results with the reference data and computing the 
percentage of data correctly extracted and the percentage of 
reference data not extracted.  
 
4.1 DSM/DTM and NDVI (Method 1) 

By subtracting the DTM from the DSM, a so-called normalized 
DSM (nDSM) is generated, which describes the above-ground 
objects, including buildings and trees. As DSM, the surface 
model generated by SAT-PP and as DTM the Lidar DTM grid 
were used. NDVI image has been generated using the NIR and 
R bands. A standard unsupervised (ISODATA) classification 
was used to extract vegetation from NDVI image. The 
intersection of the nDSM with NDVI should correspond to 
trees. By subtracting the resulting trees from the nDSM, the 
buildings are obtained. 83% of building class pixels were 
correctly classified, while all of 109 buildings have been 
detected but not fully, the omission error is 7% . Within the 
detected buildings, some other objects, such as aircrafts and 
vehicles, were included. The extracted buildings are shown in 
Figure 1.   
 

    
Figure 1. Building detection result from method 1. (Left: airport 
buildings, Right: residential area). 
 
4.2 Supervised classification and use of nDSM (Method 2) 

The basic idea of this method is to combine the results from a 
supervised classification with the height information contained 
in the nDSM. Supervised classification methods are preferable 
to unsupervised ones, because the target of the project is to 
detect well-defined standard target classes (airport buildings, 
airport corridors, bare ground, grass, trees, roads, residential 
houses, shadows etc.), present at airport sites. The training areas 
were selected manually using AOI (Area Of Interest) tools 
within the ERDAS Imagine commercial software (Kloer, 1994). 
Among the available image bands for classification (R, G and B 
from colour images and NIR, R and G bands from CIR images), 
only the bands from CIR images were used due to their better 
resolution and the presence of NIR channel (indispensable for 
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vegetation detection). In addition, new synthetic bands were 
generated from the selected channels: a) 3 images from 
principal component analysis (PC1, PC2, PC3); b) one image 
from NDVI computation using the NIR-R channels and c) one 
saturation image (S) obtained by converting the NIR-R-G 
channels in the IHS (Intensity, Hue, Saturation) colour space. 
The separability of the target classes was analyzed through use 
of plots by mean and standard deviation for each class and 
channel and divergence matrix analysis of all possible 
combinations of the three CIR channels and the additional 
channels, mentioned above. The analysis showed that: 
• G and PC2 have high correlation with other bands 
• NIR-R-PC1 is the best combination based on the plot 

analysis 
• NIR band shows good separability based on the divergence 

analysis 
• PC1-NDVI-S combination shows best separability over 

three-band combinations based on the divergence analysis. 
 
Therefore, the combination NIR-R-PC1-NDVI -S was selected 
for classification. The maximum likelihood classification 
method was used. As expected from their low values in the 
divergence matrix, grass and trees, airport buildings and 
residential houses, airport corridors and bare ground, airport 
buildings and bare ground could not be separated. Using the 
height information from nDSM, airport ground and bare ground 
and roads were fused into “ground” and airport buildings with 
residential houses into “buildings”, while trees and grass, as 
well as buildings and ground could be separated. The final 
classification is shown in Figure 2. 84% of the building class is 
correctly classified, while All of 109 buildings have been 
detected but not fully, the omission error is  9% . Aircrafts and 
vehicles are again mixed with buildings.  
 

   
Figure 2. Building detection result from method 2. (Left: airport 
buildings, Right: residential area). 
 
4.3 Building detection using density of raw Lidar DTM and 
NDVI (Method 3) 

Buildings and other objects, like high or dense trees, vehicles, 
aircrafts, etc. are characterized by null or very low density in 
the DTM point cloud. Using the vegetation class from NDVI 
channel as a mask, the areas covered by trees are eliminated, 
while small objects (aircrafts, vehicles) are eliminated by 
deleting them, if their area is smaller than 25m2. Thus, only 
buildings remain (Figure 3). 85% of building class pixels are 
correctly classified, while 108 of 109 buildings have been 
detected but not fully extracted, the omission error is 8% . 
 

    
Figure 3. Building detection result from method 3. (Left: airport 
buildings, Right: residential area). 
 
4.4 Building and tree detection from Lidar data (Method 4) 

As mentioned above, in the raw DSM data the point density is 
generally much higher at trees than at open terrain or buildings. 
On the other hand, tree areas have low horizontal point density 
in the raw DTM data. We start from regions that are voids or 
have low density in the raw DTM (see Method 3). These 
regions represent mainly buildings and trees and are used as 
mask to select the raw DSM points for further analysis. In the 
next step, we used a search window over the raw Lidar DSM 
data with a size of 5 m x 5 m. Neighboring windows have an 
overlap of 50%. The window size has a relation with the 
number of points in the window and the number of the points in 
the search window affects the quality of the detection result. 
The method uses all points in the window and labels them as 
tree if all parameters below have been met. The size of 25m2 

has been agreed to be enough to extract one single tree. A 
bigger size may result in wrong detection especially in areas 
where the buildings are neighboring with single trees. On the 
other hand, the data has low point density: 1 pt / 2 m2, that 
means about 13 pts / 25 m2. A smaller size will contain less 
points and this may not be enough for the detection.  
 
The points in each search window are projected onto the xz and 
yz planes and divided for each projection in eight equal sub-
regions using xmin, xmid, xmax, zmin zmid1 zmid2 zmid3 zmax as 
boundary  values of sub-regions, with xmid = xmin + 2.5m , xmax 
= xmid + 2.5m, zmid1=zmin+(zmax-zmin)/4, zmid2 =zmin+2*(zmax-
zmin)/4, zmid3=zmin+3*(zmax-zmin)/4 and similarly for the yz 
projection. The density in the eight sub-regions is computed. 
The first step is the detection of trees and the second the 
subtraction of tree points from all off-terrain points. The trees 
have been extracted by four different parameters. The 
parameters have been calculated using tree-masked areas of the 
raw Lidar DSM data. The tree mask has been generated by 
Method 2. Then, the calculated parameters (the average of all 
search windows) have been applied to the raw Lidar DSM data 
for detection of trees.  
 
The first parameter (s) is similarity of surface normal vectors. 
We assume that the tree points would not fit to a plane. With 
selection of three random points in the search window, the 
surface normal vectors have been calculated n (number of 
points in search window) times. Then, all calculated vectors 
have been compared among each other. In case of similar value 
of compared vectors, the similarity value was increased by 
adding 1. In the tree masked points, the parameter (s) has been 
calculated as smaller than 2. The second parameter (vd) is the 
number of the eight sub-regions which contain at least one 
point. The trees have high Lidar point density vertically. Thus, 
at trees more sub-regions contain Lidar points. Using the tree 
mask, we have observed that at least 5 out of the 8 sub-regions 
contain points. Thus, the parameter (vd) has been selected as 

73

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 

vd>4. The third parameter (z) is the tree height. Using the tree 
mask from multispectral classification, we calculated the 
minimum tree height as 3m. The fourth parameter (d) is the 
point density. The minimum point density has been calculated 
for the tree masked areas as 20points/ 25m2. By applying these 
four parameters to the raw DSM Lidar data, the tree points have 
been extracted and eliminated from all off-terrain points to 
extract the buildings. The workflow can be seen in Figure 4. 
 

 
Figure 4. Workflow of detection of buildings in method 4  
 
The density of point cloud directly affects the quality of the 
result. In addition, some tree areas could not be extracted 
because of the low point density of the Lidar data. The accuracy 
analysis shows that 84% of buildings area are correctly 
extracted, while 100 of 109 buildings have been detected but 
not fully extracted, the omission error is 17% .(Figure 5). 
 

   
Figure 5. Building detection result from method 4. (Left: airport 
buildings, Right: residential area). 
 

5. ANALYSIS OF RESULTS 

Each method shows similar performance with differences in 
completeness. The reasons of the failures for correctness and 
completeness of each method can be seen in Table 2. The 
improvement of the results is performed by taking into account 
the advantages and disadvantages of the methods.  

Table 2. The reasons of the failures regarding correctness and 
completeness for each method (M: Method). 
 
Regarding completeness, the reference data has been generated 
using aerial images, and some buildings are in construction 
process. Reference data has been provided from Unique 
Company and they have produced it using aerial images. But, in 
the construction areas, these buildings were measured as fully 
completed, although they were only partly constructed in 
reality. This increases the omission error especially for the 
results of the methods 1 and 2 which use aerial images. On the 
other hand, due to the temporal difference between the 
reference vector and Lidar data, the completeness of Lidar-
based methods (methods 3 and 4) has also been negatively 
affected.   
 
5.1. Combination of the methods 
 
The results from each method have been combined according to 
their failures for different types of objects. Intersection of all 
methods gives the best correctness, while the union of the 
methods gives the best completeness. The combination of the 
results has been performed for achieving the best correctness 
with the best completeness.  
 
(1∩2): While method 2 does not include the errors resulted by 
the shadow on vegetation, the intersection of these two methods 
eliminates the problem of shadow on-vegetation (in Figure 12, 
R1). The correctness of extracted buildings from this 
combination is 86%, and the omission error is 12%.  
 
(1∩2) ∩4: This combination eliminates the airplane objects 
from the detection result (Figure 6). Consequently, another 
advantage of this combination is that it reduces the omission 
errors which arise from the construction process on some 
buildings, i.e. multitemporal differences. The correctness of 
extracted buildings from this result is 96%, and the omission 
error is 20% (in Figure 12, R2).    
 

  Correctness Failure Reasons Completeness Failure 
Reasons 

M1 
Airplanes/Other moving objects 
/shadow on 
vegetation/construction process 

Vegetation on roofs, lack of 
some parts of buildings 
which are being constructed. 

M2 Airplanes/Other moving 
objects/construction process 

Vegetation on roofs, shadow 
on roofs, lack of some parts 
of buildings being 
constructed. 

M3 
Moving objects (esp. car series 
in parking lots)/ other man-
made structures (highways etc.) 

Vegetation on roofs, 
temporal difference with 
reference data  

M4 Tree groups which could not be 
extracted and eliminated 

Non-detection of small 
buildings (problem related  
to low point density),  
detection of walls as 
vegetation,  temporal 
difference with reference 
data  

Tree + building points

DTM 
Raw  

Horizontal density analysis 
on DTM Raw 

•Similarity of surface 
normal vectors (s<2) 
•Vertical density vd>4 
•Point density d≥20 
•Minimum height z ≥3 

Tree points 
Building 
points 

 DSM 
Raw 
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Figure 6. Left: Airplanes which were detected as buildings in 
(1∩2), Right: Elimination of airplanes with (1∩2) ∩4. 
 
((1∩2) ∩4) U 3: Shadow regions on buildings are replaced with 
building regions and by this combination (Figure 7). Since 
method 3 brings the buildings which could not be detected well 
by method 4, and method 3 is not influenced by shadow, this 
combination provides better completeness (in Figure 12, R3). 
 

    
Figure 7. Left: buildings without the regions which covered by 
shadow in ((1∩2) ∩4), Right: more complete roofs with ((1∩2) 
∩4) U 3. 
 
After the union process with the results of the Method-3, the 
vegetation on the roof tops is still a problem. Intersection of the 
nDSM and the NDVI algorithms provides the tree and 
vegetation regions on the roof tops. Intersection of the extracted 
vegetated regions with building polygons of the Method-4 
results in the roof regions which contain vegetation (Figure 8). 
 

 
Figure 8. Roof regions which contain vegetation. 
 
After adding the roof regions which contain vegetation into the 
detection result (in Figure 12, R4), the correctness and 
completeness values are 85% and 7%. As mentioned before, 
since method 2 have detected all buildings although not fully, 
the final building polygons should overlap the results from 
method 2. If the building polygons of result (R4) do not overlap 
with the results of method 2, they are eliminated. The 
correctness of the results is improved to 91% and the omission 
is 7% (Figure 12, R5). 
  
5.2. Using edge information for improvement of correctness 
 
Image data provide edge information, and this can be used to 
find the precise outlines of the buildings. Firstly, the Canny 
edge detector (Canny, 1986) has been applied on the 
orthoimages. The edges have been split into straight lines using 
corner points which were detected by corner detection (Harris 
and Stephens, 1988). This has been performed using the 
Gandalf image processing library (Gandalf, 2009). The straight 
lines which are smaller than 1 m. have been considered as noise 

and they have been deleted. The straight lines which may 
belong to building outlines have been selected using the outline 
of the detection result (which comes from the combination of 
methods) and a 2m buffer zone (1m inside, 1 m outside of the 
building outline). If the straight lines are neighbours in the 
buffer zone, the longest straight line has been selected. There is 
an exception for this neighboring criterion: the start or end point 
of a straight line should not be the closest point to the 
neighbouring line. With this exception, we avoid the 
elimination of lines, which are almost collinear (Figure 9). 
  

  
Figure 9. Left: the straight lines which may belong to the 
building outline (yellow) and Right: long lines (red). 
 
After selection of the straight lines, they have been converted to 
closed polygons. For the conversion to polygons, a sorting of 
the lines in clock-wise direction is used. To perform sorting, the 
travelling salesman convex hull algorithm (Deineko et al., 
1992) has been applied.  After closing the polygons, we 
separate the lines into those that were detected from the images 
(red) and the ones added by this algorithm (blue) (see Figure 
10). The red straight lines, which are shorter than 10 m. and 
form an acute angle (between 1 and 80 degrees), are eliminated 
(Figure 10), as well as all blue lines. 

 
Figure 10. Line elimination procedure when the line length is 
shorter than 10 meters and has acute angle with its 
neighbouring lines (red: eliminated lines, blue: lines added by 
the travelling salesman algorithm, yellow: acute angle). 
 
If two red lines form an acute angle and are shorter than 10 m., 
then both lines are eliminated. After this elimination, the 
travelling salesman convex hull algorithm has been applied 
again using the non-eliminated red lines and generated the 
refined building polygons (Figure 11).  
 

     
Figure 11. Final building polygons (yellow)., and reference data 
(red). 
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After this process, the correctness has been improved to 94% 
with remaining 7% omission error (Figure 12, R6). However, it 
has not been applied on all 109 buildings of this test yet, due to 
time restrictions, while it has shortcomings, as the travelling 
salesman algorithm does not use any input data information for 
forming closed polygons. 
 
5.3 Final results 
 
The rule-based system for the combination of methods can be 
seen in Figure 12.  
 

 
Figure 12. Combination of the methods. R: result from 
combination, M: Method.   
 
Table 3 gives a summary of the correctness and omission 
percentages of the various detection methods.  

 
Table 3. Summary of the correctness and omission percentages. 
 

6. CONCLUSIONS 

In this paper, different methods for object detection (mainly 
buildings) in Lidar data and aerial images have been presented. 
In each method, the basic idea was to get first preliminary 
results and improve them later using the results of the other 
methods. The methods have been tested on a dataset located at 
Zurich Airport, Switzerland, containing RGB and CIR, Lidar 
DTM and DSM point clouds and regular grids and building 
vector data for accuracy assessment. The results from each 
method have been combined according to their error 

characteristics. Edges have been used for further improvement 
of the detected building outlines. Finally, the correctness of 
detection has been 94% with remaining 7% omission error that 
mostly comes from construction process on airport buildings. 
Future work will focus on the improvement of use of edges, 
using the Lidar DSM to eliminate lines which don’t belong to 
buildings and 3D building roof modeling. 
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DENSE MATCHING IN HIGH RESOLUTION OBLIQUE AIRBORNE IMAGES
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ABSTRACT:

An increasing number of airborne image acquisition systems being equipped with multiple small- or medium size frame cameras are
operational. The cameras normally cover different viewing directions. In contrast to vertical images, those oblique images have some
specific properties, like a significantly varying image scale, and more occlusion through high raising objects, like buildings. However,
the faces of buildings and other vertically extended objects are well visible and this is why oblique images are used for instance for
visualization purposes.
This paper shows results from applying the sophisticated Semi-Global-Matching technique to a set of oblique airborne images. The
images were acquired by two systems, namely FLI-MAP 400 (Fugro Aerial Mapping B.V.) and Pictometry (BLOM Aerofilms) over
the same area. After the joint adjustment of the images, dense matching and forward ray intersection was performed in several image
combinations. The disparity maps were evaluated through the comparison with a reference map derived from LIDAR which was
acquired in parallel with the FLI-MAP system. Moreover, the 3D point clouds were analyzed visually and also compared to the
reference point cloud. Around 60 to 70 percent of all matches were within a range of ± 3pix to the reference. Since the images were
acquired in different flight configurations, the impact of different intersection angles and baselines to the triangulation is quite obvious.
In general, the overall structures on the building faces are well represented, but the noise reduction needs further attention.

1 INTRODUCTION

An increasing number of airborne image acquisition systems are
operational (Petrie and Walker, 2007). Because of the availability
of low-cost digital cameras with small or medium sized sensors,
some of those systems carry multiple cameras covering differ-
ent viewing directions. For instance from Pictometry1 image are
available already for a number of cities and they are accessible in
the category ”birds eye view” in Microsoft Bing Maps2 (formerly
known as Virtual Earth).

The use of oblique images for topographic mapping purposes was
shown in quite some papers. In (Höhle, 2008) height determina-
tion from single oblique images is demonstrated. The verifica-
tion of vector data using oblique imagery is shown in (Mishra
et al., 2008). Due to the fact that building façades are well vis-
ible in oblique images, some researchers concentrate on how to
automatically extract façade textures (Früh et al., 2004, Wang et
al., 2008). Besides, the oblique images are interesting for cadas-
tre applications, because the building outline as defined at the
vertical wall is directly visible (Lemmen et al., 2007). Com-
pared to vertical airborne images, oblique images have some spe-
cific properties. Depending on the tilt angle, the scale within
the imaged scene varies considerably. Moreover, vertical struc-
tures of raised objects like buildings or trees are imaged, but the
(self)occlusion by those objects is much more significant com-
pared to the vertical image case.

Another interesting application and research domain concerns the
derivation of high dense point information through image mat-
ching techniques. The benchmark results from the Middlebury3

testsets show that high quality state-of-the-art techniques to dense
matching are available. If it is possible to apply those techniques
to oblique airborne images, interesting new applications would
arise, or support existing ones, like the ones listed above. In gene-

1http://www.pictometry.com
2http://www.bing.com/maps
3http://vision.middlebury.edu/stereo/ (accessed 15 March 2009)

ral, point clouds as derived from dense matching in oblique ima-
ges can be a complementary data source to airborne laser scan-
ning, as those devices normally do not capture dense points on
vertical structures. Of course, the traditional use of this kind of
data to produce digital surface or terrain models is another possi-
ble application.

In (Besnerais et al., 2008) an approach to dense matching in obli-
que airborne images is presented. The authors develop a pixel
wise similarity criterion which accounts for the special viewing
geometry of oblique images. A dense depth map is obtained
through global regularization. The approach was tested on a num-
ber of test images and showed good results. However, the ground
sampling distance of the used images was not smaller than 1.4m,
mostly it was even larger, up to 20m.

This paper evaluates the application of the Semi-Global-Matching
technique (SGM, see (Hirschmüller, 2008)) to a set of high reso-
lution FLI-MAP4 and Pictometry images. One particular façade
of a building is normally only visible in images taken from one
viewing direction, resulting in a relatively bad intersection angle
in object space. Thus, the main objective of this paper is to eval-
uate the overall accuracy of the derived 3D point cloud as derived
from a forward intersection of matched points. Although other –
may be better performing– algorithms for dense matching exist
(Seitz et al., 2006) we chose SGM, because it demonstrated al-
ready its fitness for the photogrammetric production process, c.f.
(Hirschmüller et al., 2005).

As no sufficient calibration and orientation information was avai-
lable, the whole block first needed to be adjusted. The method
for bundle block adjustment, including self-calibration of multi-
ple devices and employing scene constraints to enhance the scene
geometry was introduced and tested in (Gerke and Nyaruhuma,
2009). The dense matching algorithm then was applied to sev-
eral combinations of stereo images, and results were evaluated
through LIDAR data which was acquired from the FLI-MAP sys-
tem.

4http://www.flimap.nl
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Figure 1: Geometry of across track (left) and along track (right) baseline in oblique stereo images

2 STEREO GEOMETRY AND ACCURACY IN
OBLIQUE IMAGES

The dense matching results in point correspondences in a stereo
pair5. The image rays as resulting from those matching image
pairs are forward intersected in order to compute 3D points in ob-
ject space. In this section a brief theoretic approximatoin of the
expected accuracy from the given intersection geometry in obli-
que airborne images is derived. Two cases can be distinguished:
A) the two cameras used for the stereo intersection are oriented
across track, i.e. they inclose a right angle with the base, and B)
the cameras are looking in flight direction. The intersection ge-
ometry of the first case can be derived from the standard normal
case, but the varying scale and the tilt of the camera coordinate
system wrt the actual coordinate system need consideration. The
second case can be compared with the longitudinal tilt-setup (Al-
bertz and Kreiling, 1980), i.e. the normal case with different ca-
mera heights. Only here the whole base is tilted. In Fig. 1 both
camera geometries are sketched.

The scale within an oblique image depends on the flying height
H , the focal length c the tilt angle t, and the angle between the
viewing ray to a target and the vertical β (symbols according to
(Höhle, 2008)):

m =
H · cos(β − t)

c · cos β
, (1)

where m: scale at target point. At the principal point β equals t,
whereas at the fore- and the background β is determined from t
and the half field of view α: βfore = t− α and βback = t + α.

A: tilt across track (side-looking) In the vertical image case,
the accuracy for triangulated points in height (s′H ), and in X-Y
plane (s′X,Y ) can be estimated by:

s′H ≈ H ′

B
·m · spx, (2)

s′X,Y ≈ sx ·m ≈ sy ·m, (3)

where sx ≈ sy ≈ 0.5 · spx are the standard deviations for image
coordinate and parallax measurements; the errors in the orienta-
tion components are neglected. In the case of the tilted camera
system, these formulas are applicable to the tilted system, so the
varying scale needs to be considered, according to equation 1,
also H ′ needs to be adopted accordingly:

H ′ = m · c. (4)

5For the combination of multiple views see the experiment section

Finally, the respective error components need to be projected
from the tilted system to the actual coordinate system:

sH ≈
q

(s′H · cos t)2 + (s′X,Y · sin t)2, (5)

sX,Y ≈
q

(s′H · sin t)2 + (s′X,Y · cos t)2, (6)

thus for a tilt angle of 45◦ both components will be identical.

B: tilt along track (forward-looking) To derive the accuracy
in the tilted system H, X ′, Y ′, first the necessary parameters for
the case of longitudinal tilt need to be computed: Base B′ in the
tilted system and the heights of the cameras I and II:

B′ = B · cos t, (7)
∆H ′ = B · sin t, (8)

H ′
I = m · c, and H ′

II = H ′
I −∆H ′. (9)

Applying partial derivation wrt the image and parallax measure-
ments to the formulas given in (Albertz and Kreiling, 1980), the
accuracies for the coordinate components in the tilted system can
be derived:

s′HI
≈ s′HII

≈
q`

HII′
px

´2 · s2
px +

`
B′·sin t

px

´2 · s2
x, (10)

s′X,Y ≈ HI′
c
· sx. (11)

Note that the actual parallax needs to be computed for the estima-
tion. In the approximations for the given data, see below, a mean
parallax according to a mean depth in fore- and background was
assumed. For the planar accuracy the more pessimistic estima-
tion, assuming the smaller image scale, is given here. Finally, the
planar and height components in the actual coordinate system are
computed according to equations 5 and 6.

3 METHODS ADOPTED

3.1 Block adjustment for multiple platforms

In (Gerke and Nyaruhuma, 2009) a method to incorporate scene
constraints into the bundle block adjustment is described and tested.
The bundle block adjustment algorithm uses horizontal and ver-
tical line features, as well as right angles to support the stability
of block geometry. Those features can be identified at building
façades, as visible in oblique images. In addition, the approach
is able to perform self-calibration on all devices which are incor-
porated in the block. This is an important issue in the case of
oblique images, as those are often acquired by non-metric came-
ras. The extension to the setup used for this paper where images
from different platforms are involved is done without any change
to the core approach.
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FLI-MAP Pictometry
Parameter vertical oblique oblique
flying height [m] 275 275 920
baseline [m] 50 50 400
tilt angle [◦] 0 45 50
number of images,viewing di-
rection

7 8xSW 2xW, 2xS,
2xE, 1xN

focal length [mm] 35 105 85
pixel size [µm] 9 9 9
sensor size [mm x mm] 36x24 36x24 36x24
GSD and theoretic accuracies (for oblique: from fore- to background)
ground sampling distance [cm] 7 2.8 – 4 10 – 16
sX,Y , vertical [cm] 4 NA NA
sZ , vertical [cm] 40 NA NA
sX,Y , across track base [cm] NA NA 22 – 44
sZ , across track base [cm] NA NA 18 – 37
sX,Y , along track base [cm] NA 60 – 92 22 – 42(*)
sZ , along track base [cm] NA 60 – 92 19 – 35(*)
(*): along track base images from Pictometry were not used.

Figure 2: Image parameters and layout of sample block

3.2 Rectification and dense matching

The approach to dense stereo matching as applied in the current
implementation is the Semi-Global-Matching algorithm (Hirsch-
müller, 2008). The basic idea behind this technique is to aggre-
gate local matching costs by a global energy function, which is
approximated by an efficient pathwise 1-dimensional optimiza-
tion.

To simplify the matching, the images are rectified beforehand.
For this purpose the approach proposed in (Oram, 2001) is ap-
plied. A homography is estimated which is compatible to the fun-
damental matrix (Hartley and Zisserman, 2004, chap. 13). The
aim is to minimize distortions due to perspective effects, and thus
also to reduce the disparity search space. A consequence from the
particular algorithm is that the epipolar lines are coincident, but
not necessarily parallel. Hence, in the subsequent rectification the
images need resampling to obtain parallel epipolar lines. One dis-
advantage of this procedure is that straight lines are not preserved,
however, this does not influence the matching. To compute the
optimal homography point correspondences are required, like for
instance in the case at hand the adjusted tie points. If images are
taken from approximately the same viewing direction, it is also
possible to extract further matches through scale invariant point
descriptors like SIFT (Lowe, 2004). Outliers in the correspon-
dences are identified through RANSAC within the estimation of
the compatible homography. The inliers are here also used to
estimate the disparity search range for the dense matching.

4 EXPERIMENTS

4.1 Description of used data

Part of the data used for these experiments was acquired by the
Fugro Inpark FLI-MAP 400 system in March 2007 over Enschede,
The Netherlands. Besides two LIDAR devices and two video ca-
meras, the system carries two small-frame cameras, one pointing
vertical, and one oblique camera, looking in flight direction, tilted
by approx. 45◦. Additional Pictometry images were made availa-
ble through BLOM Aerofilms. Those images were acquired only
one month before the FLI-MAP data. A small block of 7 ver-
tical and 8 oblique images from FLI-MAP as well as 7 images
from Pictometry was chosen for the experiments. In Fig. 2, upper
part some parameters of the images are given, the GSD and ac-
curay estimation was done according to equations 1 to 11, while
a standard deviation for image measurements of a half pixel was
assumed. In the bottom of that figure the layout of the block is
shown, including GCP, check points and the approximate posi-
tion of defined scene constraints. The highly overlapping ima-
ges in the center are from the FLI-MAP acquisition, while the
7 regularly aligned outer images are from the Pictometry-flight.
Note that no along track images are chosen from Pictometry. The
airplane acquired the images in N-S-direction, so the East- and
West-looking images belong to one flight line (baseline approx.
400m) and the two South-looking images are from two adjacent
strips, baseline approx. 350m. For the accuracy estimation the
two South-looking images can be treated like across-track ima-
ges.

4.2 Block adjustment results

Four full and one height GCP were used for the adjustment. Ad-
ditionally, one right angle, 3 horizontal and 4 vertical line con-
straints were defined. It was assured that in every image at least
one of the features used for the scene constraints was visible. In
Table 1 the adjustment results in terms of RMSE at the control
and check points, or features respectively are listed. One obser-
vation from the residuals is that the Z-component is smaller than
the X/Y values for all control and check features. Also the resid-
uals at vertical constraints are larger than the residuals at horizon-
tal constraints, and those are also influenced by the Z-component
only. One reason for this can be that the tilt of the Pictometry
images is larger than 45◦ and thus the X,Y-component is less ac-
curate than the Z-component, refer also the the listed theoretic
accuracies in Fig. 2. One general drawback of this block-setup is
that outside the overlapping areas no GCPs or scene constraints
are available and applicable, respectively, so the overall block ge-
ometry at the borders is not optimal. However, since the residuals
at the façades are at least for the Pictometry images less than one
pixel this result can be considered satisfactory.

Assessment RMSE value[cm]
X-Res. at GCP 2.1
Y-Res. at GCP 4.8
Z-Res. at GCP 1.3
X-Res. at Check 16.2
Y-Res. at Check 5.8
Z-Res. at Check 1.5
Res. at H-constraints 1.4
Res. at V-constraints 6.8
Res. at RA-constraints (◦) 0.01

Table 1: Residuals from bundle block adjustment

4.3 Dense matching results

The dense matching was performed in several stereo image com-
binations. Besides the matching in images from one platform,
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Figure 3: Two sample relative histograms of disparity differences
wrt reference disparity map. Note the scale difference between
both diagrams.

matching between FLI-MAP and Pictometry was tested. This is
interesting, because by this means the scene can be observed from
approximately the same direction through multiple views. The
overlap from consecutive Pictometry images is not large enough
to create 3-ray points, however, incorporating also FLI-MAP ima-
ges makes this possible. Besides, this setup gives an interesting
geometry for forward intersection.

Two methods were used to assess the results: one quantitative
and one qualitative. For the quantitative assessment a reference
disparity map was computed from the FLI-MAP LIDAR data,
then the differences to the disparities from image matching were
analyzed using histograms. For a more qualitative assessment 3D
point clouds were computed from the matching results and then
assessed visually, also in comparison to the LIDAR point cloud.

Disparity map assessment For this assessment the reference
LIDAR points (density: 20 points per m2) were projected into
the image plane as defined by the respective image orientation
and calibration parameters and subsequently a reference dispar-
ity map was computed. Two issues are important here: first, only
first pulse LIDAR points should be considered, as also in the
image only the visible surface can be matched. Second, through
the oblique viewing direction as realized with the cameras one
has to take into account self-occlusion through buildings; the
laser scanner scans vertical and thus scans other parts of the scene,
especially on the backside of buildings visible in the images. To
avoid errors from that circumstance, only areas which do not
show these effects were used for the evaluation.

The disparity maps were assessed by calculating the difference
disparity map and computing a histogram out of that one. Only
pixels showing a disparity value in both maps were considered,

Figure 4: Results from dense matching in two overlapping South-
looking Pictometry images. Top: left image and 3D cloud from
matching, center row: zoom to point cloud from matching at fa-
çades (left) and top view (right), bottom row: point cloud color
coded height: reference (left), from matching (right)

thus matched points at façades which were not acquired by the
LIDAR device can not be assessed. Two of such relative his-
tograms are shown in Fig. 3. The upper histogram shows the dif-
ferences from the matching within two Pictometry images (see
Fig. 4). For this histogram approx. 50 · 103 matches were con-
sidered (out of 2.2 · 106 in total), and around 70% of them show
a difference of ±3 pixels to the reference. The histogram at the
bottom shows the analysis from the matches within two oblique
images from FLI-MAP, refer to Fig. 5. For this histogram approx.
200 · 103 matches were considered (out of 6.4 · 106 in total).
Because of the smaller baseline between consecutive FLI-MAP
images, compared to Pictometry, the overlapping area is larger,
and thus results in more matches. Approximately 60% are within
the difference of ±3 pixels. All matches outside this tolerance
can be considered as blunder. A more in depth analysis revealed
that most blunders were caused in shadow areas or other areas
with poor texture. When assessing those histograms is should be
considered that errors from the image calibration and post esti-
mation also contribute to those residuals, thus a final conclusion
on the absolute matching accuracy of the SGM implementation
can not be made.

Point clouds: Pictometry to Pictometry For the following
evaluations a forward intersection of the matched points was per-
formed. A simple blunder detection was implemented by apply-
ing a threshold to the residual for image observations. For two-
ray intersections this method can filter some blunders, but be-
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Figure 5: Results from dense matching in two overlapping FLI-
MAP images. Top: part of left image and point cloud from mat-
ching, centre: 3D point cloud from matching, color coded height
(left) and color picked from images, bottom row: reference point
cloud and top view to matched point cloud . The circle indicates
an elevator box which is visible in the point cloud from matching,
but not in the laser scanning data.

cause only one redundant observation is available, quite a lot of
blunders will not be detected.

The point cloud as resulted from the triangulation of matches in
a Pictometry image pair are shown in Fig. 4. The top row in
that figure shows part of the left image and an overview on the
3D scene defined by the matched point cloud. The center row
shows a zoom in to the colored point cloud from matching, fo-
cusing on some façades and the vertical view to that scene. Fi-
nally, the bottom row shows the reference point cloud at the left
hand side, where the color codes the height (one full color cycle
equals 10m). The corresponding part of the matched point cloud
is depicted on the right hand side. From that figure some interes-
ting observations can be made. Although most of the flat roofs
show poor texture, the corresponding part in the matched point
cloud is quite dense and homogeneous. However, the height of
the roof in the upper part is not correct, it is approx. 50cm lower
than shown in the reference point cloud. In the vertical view on
the point cloud from SGM the occluded areas are clearly visi-
ble, whereas the vertical façades are not visible in the reference
point cloud. Overall, the structures are well represented, but the
mismatched pixels impose a certain level of noise to the scene.
Those mismatches can hardly be detected, as only stereo mat-
ches are available in this case. The detailed zoom on the vertical
image shows that the accuracy in x-y direction is quite good, and
apparently even better than the estimated one (sX,Y : 22 – 44cm).

Point clouds: FLI-MAP to FLI-MAP The triangulated point
cloud from the matching in two consecutive oblique images from
the FLI-MAP data is shown in Fig. 5. The zoom in to the col-

Figure 6: Results from multiple view triangulation. Top: matched
point cloud, color and height, center: reference point cloud, bot-
tom: top view

ored point cloud shows quite some details, for instance the eleva-
tor box close to the statue is clearly visible. The statue itself is
well represented and even gaps in the matches where people were
walking during image exposure are clearly identifiable. However,
those views onto the point cloud were made from the viewing di-
rection of the cameras, so the main error showing and effect in
viewing direction is not visible. The estimated depth accuracy (in
viewing direction, s′H ) of the along-track FLI-MAP data varies
from 90 to 130cm, and the error in X ′, Y ′-direction is only 2cm.
To assess the overall quality, the vertical view needs to be consid-
ered: Here the uncertainty in viewing direction is quite obvious.
If the result from the vertical view-zoom is compared to the one
from the Pictometry data (Fig.4, center row), it can be observed
that the result from the FLI-MAP data is more inaccurate. This
visually achieved observation confirms the theoretically approxi-
mated accuracy, which is about four times worse.

Point clouds: Multiple view For this experiment it was de-
sired to exclude the wrong matches from the triangulation. To
achieve this goal, the dense matching results from several mat-
ches were combined in the following manner: Dense matching
was performed in the three combinations: ¬ FLI-MAP1 ↔ FLI-
MAP2;  FLI-MAP2 ↔ Pictometry1; ® FLI-MAP1 ↔ Pictom-
etry1. The matches from ¬ and  are linked in a way that the
matching points from the right image of ¬ are searched in the
left image of  and by this means corresponding matches ®’
FLI-MAP1 ↔ Pictometry1 are created. In the subsequent trian-
gulation only those matches were considered which coincide with
the original matches from ®. Thus it can be expected that through
this double check some blunders were removed. For more de-
tails on this method see (Gerke, 2008). In Fig. 6 some details on
the results are shown. The point cloud contains now less points
(1.6 ·106 points from the FLIMAP-only point cloud vs. 190 ·103
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matches here), but the overall accuracy seems to be better, see
e.g. the height of the buildings. Also the detailed look from ver-
tical shows less noise, compared to the two-fold matches before.

5 CONCLUSIONS AND OUTLOOK

This paper reports about the utilization of the dense image mat-
ching technique Semi-Global-Matching to a set of high resolu-
tion oblique airborne images. The images were acquired from
different platforms and thus in different configurations. The com-
parison of the depth maps from matching with a reference com-
puted from LIDAR data showed that roughly 70% of all mat-
ches are within an error range of ± 3pixel, however, also the
residual errors from camera calibration and orientation have an
impact on this evaluation. The remaining matches can be consid-
ered as blunders. How can those blunders be removed and the
noise level be reduced? If multiple overlaps are available, sophis-
ticated error analysis prior to triangulation is feasible (Hirsch-
müller, 2008). Also the method as applied here shows good re-
sults, namely to eliminate wrong matches through linking mat-
ches of adjacent images and applying a double check through
a direct match. Other authors use the much stronger trinocular
stereo geometry for matching (Heinrichs et al., 2007), or apply a
similarity criterion for multiple views directly (Besnerais et al.,
2008). If only two-fold overlap is available – as mostly in fa-
cade observations from oblique images – one method could be to
incorporate reliable SIFT features within the SGM approach di-
rectly: The disparities as defined by them can be used to reduce
the respective matching cost.

The point cloud as resulted from the triangulation of the respec-
tive matches revealed the sensitivity to the ray intersection angle
and base length of cameras. For instance in the case of consec-
utive FLI-MAP images the theoretic standard deviation of trian-
gulated points in viewing (depth) direction is – due to the small
effective baseline – around 1m, but perpendicular to that – due
to the low flying height – around 2cm only. In the shown ex-
amples these theoretic measures were confirmed. In the tested
images from Pictometry the intersection geometry is better be-
cause of the longer baseline. In general, the overall structures on
the building faces are well represented, but the noise reduction
needs further attention.

In the current research the focus is put on the automatic detec-
tion and extraction of buildings in oblique images. Here, the
point cloud as derived from the matching can give valuable cues.
Another issue concerns the derivation of a more complete cove-
rage by merging the point clouds as derived from different view-
ing directions. At least for the roof areas this can be done in
a similar manner as shown above, namely through linking mat-
ches, since the majority of roof areas are visible from multiple
directions.
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ABSTRACT: 
 
This paper discusses a comparison analysis of different methods for automated building extraction from aerial and spaceborne 
imagery. Particularly approaches employing the Hough Transformation, Pattern Recognition Procedures and Texture Analysis are 
examined. Throughout this investigation advantages and disadvantages of the mentioned methods are examined, in order to see 
which procedures are suitable for extracting the geometric building properties, and thus to automatically create a DCM (Digital City 
Model). The examined data sets consist of panchromatic imagery coming from both very high resolution satellites, as well as line 
scanning aerial sensors. A quantitative and qualitative assessment will help to evaluate the previously mentioned procedures. 
 
 
 

1. INTRODUCTION 

Automated building extraction from high resolution image data 
(either airborne or spaceborne) is becoming more and more 
mature. Everyday new techniques are investigated and the 
results are getting more and more reliable, while the degree of 
automation increases. Each building extraction method is of 
course coupled to certain pros and cons. The use of the Hough 
Transformation has proven to be a very promising tool in the 
frame of the automated creation of Digital City Models 
(DCMs), by extracting building properties from optical data. 
But also approaches based on Image Matching or Texture 
Analysis seem to provide usable results. A DCM is described 
through the outlines of buildings outlines of an urban area. 
Vertical walls are assumed, and the elevation information of 
these buildings can be taken from a DSM (Digital Surface 
Model). The creation of the DSM and the assignement of the 
elevation value is not discussed in this paper, thus when 
mentioning DCMs we actually mean the Model that holds the 
2D outline-information of a building. 
 
The goal of this paper is to conclude for which kind of data sets 
and accuracy pretensions a certain approach is recommendable. 
Moreover, the reachable degree of automation is also examined, 
in order to see how reliable results are that were produced 
without human interaction.  
 

Table 1: Examined data sets. 
Sensor Location GSD (m) Extents (km) 

ADS40 Valladolid, Spain 0.25 1 x 1 
HRSC-AX Bern, Switzerland ca. 0.3 0.2 x 0.3 
Quickbird Denver, USA 0.6 16.9 x 16.5 
IKONOS Athens, Greece 1 9.7 x 12.3 
Orbview 3 Orange, USA 1 0.6 x 0.7 
 
Altogether, five different datasets, coming from airborne and 
spaceborne sensors, were examined. These datasets depict 
urban regions with varying building sizes, patterns and 
densities. It should be mentioned here that only subsets have 
been used for the investigations. 
 

 
2. DESCRIPTION OF WORKFLOWS 

2.1 Hough Transformation 

The proposed workflow for automated building extraction from 
image data by employing the Hough Transformation has been 
thoroughly described in Vozikis (2004).  Figure 1 shows the 
major steps of the process. 
 

 
Figure 1: Proposed workflow for automated building extraction 

from image data 
 
All steps in this workflow are highly automated and human 
interaction is reduced to a minimum.  
In the following the 4 major steps are briefly described. 
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2.1.1 Pre-Processing 
This step comprises the procedures from orientation of the input 
data up to the DSM (Digital Surface Model) creation. For VHR 
satellite imagery the orientation approach is based on the RFM 
(Rational Function Model) (Vozikis et al., 2003). When dealing 
with aerial imagery it is made use of GPS/INS information in 
order perform direct georeferencing, and thus automated image 
triangulation (Scholten and Gwinner, 2003). The DSM 
extraction is performed by automated correlation procedures, 
which nowadays are very mature and produce very good 
results. 
 
2.1.2 nDSM Creation 
The goal is to derive the DTM (Digital Terrain Model) from the 
DSM and subtract it from the DSM in order to produce the so-
called nDSM (normalized Digital Surface Model). This way all 
extruding objects in the data set (including buildings) stand on 
elevation height 0 (Figure 2). 
 

 
Figure 2: DSM, DTM and nDSM. 

 
2.1.3 Building Detection (Seeding) 
This crucial step deals with the identification of potential 
building candidates in the data sets (=determination of seed 
points inside buildings). It is proposed to perform 2 statistical 
analyses. First, perform a thresholding in the nDSM and filter 
out all objects that are not taller than a certain height, and 
second, perform texture analysis in the image data to keep only 
roof-similar regions in the data set (Vozikis, 2004). 
 

 
Figure 3: Computation of seed points (red asterisks) inside 

potential building candidates by height-thresholding 
and texture filtering. 

 
2.1.4 Building Extraction 
By applying the Hough Transformation (to an image of gradient 
or of contours) the geometric properties of the buildings 
(building edges and corners) are extracted. Our approach is 
based on a stepwise, iterative Hough Transformation in 
combination with an adaptive region growing algorithm 
(Vozikis and Jansa, 2008). The general idea is to transform the 
information in the image (feature space) into a parameter space 
and apply there an analysis. It is a technique for isolating 
features that share common characteristics. The classical Hough 
transformation is used to detect lines, circles, ellipses etc., 
whereas the generalized form can be used to detect features that 
cannot easily be described in an analytical way. 
The mathematical analysis of the Hough Transformation is 
described in detail in Gonzalez and Woods (1992). 
Briefly it can be described as follows: 
 

( ) ( )θθρ sincos yx −=  (1) 
 
where ρ is the perpendicular distance of a line from the origin  
and     θ the angle (in the range 0 to π) as illustrated in Figure 4. 
 
To apply this function on the whole image, Equation 1 can be 
extended as shown in Equation  2.  
 

( ) ( ) ( ) ( )( )dxdyyxyxFH θθρδρθ sincos,, −−= ∫ ∫
∞

∞−

∞

∞−  
(2) 

 
where δ is the Dirac delta-function. Each point (x,y) in the 
original image F(x,y) is transformed into a sinusoid ρ = xcos(θ) 
– ysin(θ). 
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Figure 4: Hough transformation. 

 
Points that lie on the same line in the image (feature space = 
Image Domain) will produce sinusoids that all intersect at a 
single point in the Hough domain (parameter space = Hough 
Domain). For the inverse transform, or back-projection, each 
intersection point in the Hough domain is transformed into a 
straight line in the image (Figure 5). 
 

 
Figure 5: Example: Hough transformation. 

 
The research shows that by using the Hough Transformation for 
building extraction we have many advantages, such as the good 
handling of noisy data, the easy adjustment of level of detail of 
the output data, the ability to force certain geometric properties 
into the extracted buildings and the possibility to bridge gaps, 
meaning that building corners that might not be visible in the 
imagery can be determined accurately. The proposed 
methodology proves to have certain weaknesses when dealing 
with radiometrically heterogeneous roofs, when big shadows 
cover large areas of roofs of the buildings to be extracted, when 
the building geometry becomes very complex, or when the 
input data set comprises many compound building (Vozikis and 
Jansa, 2008). 
 
2.2 Image Matching 

This strategy follows the basic principle of image matching by 
correlation. A given reference image matrix is searched in the 
image under investigation (the so-called search image) by 
moving the reference matrix pixel by pixel over the entire 
image area. Potential candidate positions, i.e. positions of high 
similarity, are marked if a so-called correlation coefficient 
exceeds a predefined threshold. In order to find the optimum 
geometric fit, the searching procedure includes, besides 
translation, also rotation and scaling. Thus houses of similar 
shape but different size are found too.   
 

The reference image is usually a small image matrix, here 
depending on the size of the building to be searched, whereas 
the search image is a rather big image matrix in our case 
covering the whole area under investigation. 
 

Figure 6: Search, reference and correlation image. 
 
Figure 6 shows the principle of the correlation procedure. The 
left hand side indicates the searching process with the reference 
image and the given spaceborne or airborne image as search 
image. The correlation index is computed for each position of 
the reference image and the results are stored as similarity 
measure in the so-called correlation image. Potential building 
positions are characterized by a high correlation coefficient and 
thus the correlation image just needs to be thresholded and the 
local maxima are localised. It has to be mentioned that one 
crucial parameter is certainly the appropriate threshold value. 
Its choice determines quite significantly the quality of the 
result. If the threshold is too low, too many buildings are 
detected leading to a great number of false matches. If the 
threshold is too high, the selection is too strict and, as a 
consequence, too many buildings will be rejected. It is not 
possible to define an optimum threshold as a general 
suggestion. For the cross-correlation coefficient using 0.7 to 0.8 
is certainly a good choice for starting, but individual 
adjustments are necessary in any case. 
 
As measure of similarity the cross-correlation coefficient 
(Equation 3) is adopted, but also other measures can be used 
(Equations 4 and 5). 
 

( ) ( )
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∑
−⋅−
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where g1 and g2 are the grey values in the reference and search 
window, 

1g and 2g are the mean grey values in the reference and the 
search window and 
 n is the number of used pixels. 
 
Kraus (1996) suggests rewriting Equation 3 as follows for a 
more efficient computation: 
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Note, that when using  Equation 6 the computing effort is 

reduced since the expression ( )∑ ⋅− 2
1

2
1 gng  is constant during 

the whole process and has to be calculated only once. 
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The finding of the maxima in the correlation image with sub-
pixel accuracy by approximating the discrete correlation 
function by a continuous polynomial function is broadly 
discussed in Kraus (1996) and will not be described here. 
 
Figure 7 shows an example were one search image was matched 
with multiple reference images.  
 

 
Figure 7: Correlation example. The brighter the pixels, the 

higher the correlation, i.e. the greater the similarity 
between search image and reference image. 

 
For the practical implementation, the reference images of 
buildings are stored in a library. For each of these buildings also 
vector information (describing the building outline in the 
reference image coordinate system) is available. Thus the 
library contains multiple building types to which one image 
patch and one vector representation corresponds. 
 
Once a location of high correlation is found in the search image, 
the vector data of this building is transformed into the 
coordinate system of the search image. 
 

 
Figure 8: Example on image matching with two reference 

images and multiple orientations (Quickbird-subset 
of Phoenix area). Note that the computed correlation 
image is a multi-dimensional image. The number of 
dimension corresponds to the number of rotations 
(here: 120 with a rotation step of 3 degrees). 

 

It is often the case that buildings of the same (or similar) shape 
have different colours (grey values) in the images (e.g. due to 
different roof materials). Therefore it is advisable not to store 
image patches of the investigated buildings in the library, but 
instead, register their edges. In this case, also the search image 
has to be edge-extracted before applying the matching 
procedure. For gaining the edge information, classical operators 
like the Canny edge detector, Sobel operator, Laplacian of 
Gaussian etc. can be applied. 
Figure 8  shows an example of the image matching procedure. 
 
2.3 Texture Analysis 

One of the simplest ways for describing texture is to use 
statistical moments of grey level histograms of an image or a 
region. Measures of texture computed using only histograms 
suffer from the limitation that they carry no information 
regarding the relative position of the pixels with respect to each 
other. One way to bring this type of information into texture 
analysis process is to consider not only the distribution of 
intensities, but also the distribution of intensity variation 
(Gonzalez and Woods, 2002). 
 
For this kind of textural examination, firstly the so-called co-
occurrence matrix has to be derived for the examined area. This 
particular matrix holds e.g. information of pixel changes in 
multiple directions (usually horizontally, vertically and 
diagonally). The co-occurrence matrix’ extents are same in both 
directions and equal to the number of grey levels that will be 
considered. For example, for an 8 bit image (256 grey values) 
the co-occurrence matrix’ extents would be 256 by 256. Usually 
a recoding is carried out to reduce the number of grey value 
classes (also called bins). A recoding of the original image 
down to 16 grey levels is for most of the cases satisfying (Gong 
et al., 1992). Nevertheless, during this research (on texture 
analysis), all images were recoded to 40 bins. 
 

 
Figure 9: Image and corresponding co-occurrence matrices in 

horizontal (left to right) and vertical (top to down) 
directions. 

 
At each position mc,r the co-occurrence matrix holds the 
number of changes from class r (=row indices) to class c 
(=column indices) (see Figure 9). This computation is carried 
out for multiple directions, meaning that one co-occurrence 
matrix is created for each direction. Figure 10 illustrates the 
creation of such matrices; here, four grey values exist and the 
co-occurrence matrices are derived for horizontal and vertical 
directions. 
 
The task now is to analyze a given co-occurrence matrix in 
order to categorize the region for which it was computed. 
Therefore descriptors are needed that characterize these 
matrices. Some of the most commonly used descriptors are 

86

       CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 

thoroughly described in (Haralick 1979, Gonzalez and Woods 
2002, Zhang 2001). It is obvious how important it is to include 
some kind of information that tells us whether the values are 
well distributed over the whole matrix, or whether they are 
mostly located close to the matrix diagonals (e.g. Difference 
Moment or Inverse Difference Moment, Equations 5-10 and 5-
11). In case big values lie close or on the diagonal (Figure 10, 
non-urban), the region under investigation is expected to be 
homogeneous, whereas if the values are distributed more 
homogeneously (Figure 10, urban), the co-occurrence matrix 
corresponds to a heterogeneous region. 
 

 
Figure 10: Horizontal and vertical co-occurrence matrices for 3 

different types of terrain. 
 
Usually the quality of the input data (i.e. imagery and DSM) is 
responsible for erroneous results. It is very difficult for the 
introduced algorithm to produce correct results, if the buildings 
to be extracted does not cover a certain number of pixels. For 
instance, when dealing with IKONOS imagery (with GSD of 
1m) a small house of 8m x 10m will most probably not be 
extracted correctly. 
 
The procedures discussed in paragraph 2.2 and 2.3 fall into the 
category of feature extraction and make use of the imagery for 
deriving the geometric building properties.  
The general idea is to use a library where characteristic features 
of buildings are stored; by analyzing the image, areas are 
searched that correspond to a high degree to the registered 
“library buildings”. Characteristic features of a building can be 
textural measures (by using the so-called occurrence and co-
occurrence descriptors) or similarity measures of the image 
grey values. 
 

3. RESULTS 

In this chapter an evaluation of the presented methods is given. 
It consists of a quantitative and qualitative description, and 
moreover shortcomings and weaknesses of the presented 
methods are discussed. 
 
Since many subsets are examined that are coming from various 
types of line scanning systems, both airborne and spaceborne 
(ADS40, HRSC-AX, Quickbird, Orbview, IKONOS, SPOT5), 
their outcomes will not be listed individually. Errors in the 
qualitative evaluation will be given in image space units 
(pixels). 
 
We consider that the pre-processing has been carried out 
without error, so that the orientation of the imagery and the 
derived orthophotos on which we apply the investigated 
techniques are correct. We will also not evaluate nDSM 
extraction algorithms and their qualities in detail, since this is 
not topic of this research. 
 

The presented outcomes are divided into two groups: 
quantitative and qualitative results. Moreover, the three 
presented DCM extraction approaches are evaluated 
individually. Input data is subdivided into categories depending 
on image scale and building density (low urban and urban) of 
the investigated areas. Image scale is defined as the scale that 
we would expect from an analogue product, e.g. for a 1:10,000 
product we expect 1-2 metres accuracy in nature, if the 
graphical accuracy and visual perceptivity are 0.1-0.2mm. 
 
Regarding the mentioned image scales the three interpretation 
categories are: 

1. scale A: 1:1000-1:4000 
2. scale B: 1:4000-1:12000 
3. scale C: < 1:12000 

 
3.1 Quantitative Assessment of Building Extraction 

The aim in the quantitative analysis is to evaluate whether the 
presented approaches are practical in sense of completeness of 
building detection of the result, i.e. how many buildings were 
actually found. It is investigated whether the techniques for 
finding potential building candidates are applicable. 
Furthermore, an evaluation is carried out to see how many of 
these buildings were extracted and to what a degree:  

• CFB: Correctly Found Buildings,  
• NFB: Not Found Buildings (also includes 

insufficiently mapped buildings: building seed point 
was determined successfully, but the adaptive region 
growing process did not manage to create an area that 
covers a reasonable amount of the object),  

• WFB: Wrongly Found Buildings, i.e. found objects 
were in reality no building exists. 

 
The calculation of CFB (true positive), NFB (false negative) 
and WFB (false positive) are briefly explained in the following: 
The CFB and NFB percentages are calculated with respect to 
the total number of existing buildings in the area under 
investigation, whereas the WFB is calculated with respect to the 
total number of found buildings (comprising correctly and 
wrongly found buildings). Figure 11 shows the way of 
computing and a numerical example, respectively. 
 

 
Figure 11: Illustration for quantitative assessment computation. 
 
For the evaluation of the outcomes altogether 13 different 
scenes containing 677 buildings were examined. 
Table 2 allocates the quantitative analysis. 
 
Concerning the level of detail that can be derived from 
individual data sets the Nyquist theorem has to be taken into 
consideration (“Sampling rate must be at least twice as high as 
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the highest frequency of the signal.”). For our situation it means 
that sensor’s geometric resolution determines the object 
resolution, or in other words, the level of detail of the object.  

Table2: Quantitative results. 
scale A B B C C 

type urban low 
urban 

low 
urban low urban low 

urban 

sensors airborne airborne space-
borne 

space-
borne 

space-
borne 

method Seeding Seeding Seeding Matching Texture 
Analysis 

CFB 80.5% 90.2% 97% 88.3% 34.4% 
NFB 19.5% 9.8% 3% 11.7% 65.6% 
WFB 7.3% 4.8% 30.3% 1.7% 17.2% 

 
3.2 Qualitative Assessment of Building Extraction 

The qualitative analysis is based on a comparison between the 
building outlines derived by using the proposed automated 
methodology, and manually mapped buildings (image 
restitution). The manual mapping is carried out by a 
professional operator who performs 2D (or 3D) digitization on 
the input data (oriented imagery or orthophotos).   
The residuals of each building corner from the manual mapping 
and the closest point of the automatically extracted shape are 
computed as a quality measure. 
The results are categorized in three groups depending on the 
method used for building extraction (Table 3). The RMS is 
given in pixels.  
 

Table3: Qualitative results. 
 Hough Matching Texture 

Analysis 
RMS x  0.937 0.898 0.954 
RMS y 0.914 0.958 0.996 

total RMS 1.309 1.313 1.379 
 
The number of examined objects is the same as in the 
quantitative analysis. 
Note that the figures in Table 3 are based on image residuals. 
They show the difference of the automatically derived corner 
points and the digitized ones in the image. As our data sets were 
acquired with vertical viewing angles these results can be also 
interpreted as planimetric object space residuals. 
But when dealing with images that were captured with oblique 
viewing angles, the buildings must be projected into object 
space in order to carry out a qualitative analysis in the reference 
system.  
 

4. CONCLUSIONS 

The aim of this work was to propose a method for generating 
DCMs which makes use of images from spaceborne or airborne 
line scanning devices, on orthophotos if available and on 
elevation models. Various image processing techniques, such as 
Hough transformation, adaptive region growing, image 
matching, texture analysis, were employed and investigated for 
deriving the strengths and weaknesses of each. A variety of data 
sets were tested, coming from both spaceborne and airborne 
acquisition systems. Through the research based on adaptive 
region growing and on the iterative Hough transformation we 
can conclude that the method is very powerful, but has also 
some weaknesses. One is the high dependence on the 
radiometric quality of the input imagery. Furthermore, rather 
small buildings will not be treated correctly. Image matching 
proved to be a very effective, but very time consuming. The 

suggested strategy of texture analysis, although very efficient 
for pattern recognition over areas in small scale imagery, was 
not very successful for extracting individual buildings. 
Through this research partly very good results were obtained, 
but nevertheless further investigations are necessary for 
improving the quality of the results even more. 
Future work will be focused on: 

• Extraction of objects with holes (e.g. houses with 
inner courtyards), i.e. deriving the inner and outer 
boundary of buildings. 

• Research on constraint settings for aggregating 
neighbouring roof parts that belong to one building. 

• Introduction of multispectral information for making 
the algorithms more efficient, especially as far as seed 
point determination is concerned. 

• Extract edges on sub-pixel bases. 
• Integrate a hierarchical approach in order to decrease 

computation time. 
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ABSTRACT: 
 
In this paper a methodology and results of semi-automatic city DSM extraction from an Ikonos triplet, is introduced. Built-up areas 
are known as being complex for photogrammetric purposes, mainly because of the steep changes in elevation caused by buildings 
and urban features. To make surface model extraction more robust and to cope with the specific problems of height displacement, 
concealed areas and shadow, a multi-image based approach is followed. For the VHR tri-stereoscopic study an area extending from 
the centre of Istanbul to the urban fringe is chosen. Research concentrates on the development of methods to optimize the extraction 
of a surface model from the bundled Ikonos triplet over an urban area, without manual plotting of buildings. Optimal methods need 
to be found to improve the radiometry and geometric alignment of the multi-temporal imagery, to optimize the semi-automatical 
derivation of DSMs from an urban environment and to enhance the quality of the resulting surface model and especially to reduce 
smoothing effects by applying spatial filters. 
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1. INTRODUCTION 

The high level of detail and geometric accuracy of very high 
resolution satellite data such as Ikonos imagery, has made this 
kind of imagery suitable for DSM generation at feature level of 
urban environments. Due to the photogrammetric complexity of 
urban areas, quite some research is done to cope with the 
specific problems of urban surface model generation from 
standard stereopairs. As a multi-image based approach can 
make the 3D modelling more robust, a methodology and results 
of semi-automatic DSM production from an Ikonos triplet over 
an urban area, is highlighted in this paper. From a theoretical 
point of view the redundancy of a third image should lead to a 
more reliable photogrammetric processing. Only a few 
investigations have been published dealing with the concerning 
subject. Research published in (Baltsavias et al., 2006) and 
(Raggam, 2006) can be referred to. 
 
Research is conducted within the framework of the MAMUD 
project (Measuring And Modelling of Urban Dynamics) funded 
by the STEREO (Support to The Exploitation and Research of 
Earth Observation data) program of Belgian Science Policy.  
The objectives of the MAMUD research project is to investigate 
the possibilities of earth observation for a better monitoring, 
modelling and understanding of urban growth and land-use 
change. Urban change processes are affecting the human and 
natural environment in a not unimportant way. This enlarges the 
need for more effective urban management approaches based on 
sustainable development. A sustainable urban management 
needs sufficiently detailed and reliable base information on the 
urban environment and its dynamics. Satellite imagery has 
proven to be an important data source to monitor and describe 
urban areas and its changes. Hereby, detailed information on the 
vertical structure is vital to label urban features, to describe 
urban morphology and to generate spatial metrics. If the 
subsequent approach is proved to be successful, it will increase 

the flexibility of producing semi-automatic 3D city models from 
high resolution satellite imagery. 
The complexity of an urban environment for photogrammetric 
purposes will be highlighted in section 2. In section 3 the image 
dataset and work area will be outlined. The different phases of 
the photogrammetric processing of the Ikonos triplet are stated 
in section 4. In following section, spatial filtering is applied on 
the height values of the surface model to improve the quality 
and reduce smoothing effects. Geometric accuracy analysis is 
discussed in section 6. Finally, in section 7 experiences and 
conclusions are summarized. 
 
 

2. COMPLEXITY OF URBAN AREAS 

A Digital Surface Model is a digital representation of the terrain 
and topographic object height in a grid structure. Interpolation 
of the discrete height values is needed to approximate the 
continuity of the ground surface. Urban environments are 
experienced as complex for 3D modelling purposes because of 
the steep changes in elevation and the discrepancy between the 
smoothness of the ground surface and abrupt discontinuities 
caused by buildings and other urban features. Without manual 
plotting or spatial filter techniques it is difficult to reconstruct 
vertical walls out of VHR satellite imagery. An interpolation 
technique creates a smoothed surface and causes individual 
buildings will have a shape of a bell instead of the rectangular 
geometry (Jacobsen, 2006). A second consequence of steep 
changes in elevation is the occurrence of shadow and concealed 
areas. Due to the convergent viewing angle of VHR sensors like 
Ikonos, terrain features with certain height above the surface are 
geometrically displaced in the imagery, leading to 
dissimilarities between the stereo images. 
By this distortion of its true position, parts of the ground surface 
can be hidden in the satellite image. These are so-called 
occluded areas. Shadow areas, which have poor contrast, and 
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occlusion areas lead to mismatches during the image matching 
algorithm and subsequently to errors in the resulting surface 
model. 
 
 

3. DATA SET AND STUDY AREA 

The satellite Ikonos is able to rotate the CCD Linear Array 
sensor up to an angle of 26° off-nadir, so the satellite can take 
images of the same location from two different view points on 
the same orbital track. Next to along track stereo pairs, it is also 
possible to create stereo couples out of images from the same 
area but taken from a different orbit at a different date. These 
are so-called across track stereo pairs. This approach to form 
couples has some disadvantages. The most important ones are 
radiometric differences and changes of the ground surface due 
to the time gap between acquisition of the imagery. A triplet is 
constructed out of an along track Ikonos stereo pair taken in 
March 2002 and a third image taken in May 2005. The third 
image can be considered as a nadir image. Selection criteria for 
the near vertical image were multiple: overlap with stereo 
couple, cloud-free acquisition, minimal time interval and 
optimal stereo constellation. Despite the big time interval, the 
2005 Ikonos image was chosen to be the most optimal 
candidate.  
 

 
Figure 1. High resolution study field, indicated by the red 

polygon. The extent of the HR study area covers the 
overlapping area between the 3 Ikonos images.  

 
The Ikonos STEREO product imagery, which comprises of a 
forward and backward image acquisition and the GEO Ortho 
Kit 2005 image are panchromatic, resampled to a spatial 
resolution of 1 m by the image provider and provided with the 
Rational Polynomial Coefficients (RPC) camera model file. 
Further characteristics of each image of the triplet can be found 
in table 1. 
 
 
 
 
 
 
 

Image ID Acquisition 
date 

Elevation 
angle 

Collection 
azimuth 

Sun 
elevation 
angle  

A (Forward) 1/03/2002 67.59° 1.6° 39.1° 

B (Backward) 1/03/2002 75.59° 214.1° 39.1° 

C (Nadir) 16/05/2005 80.93° 23.5° 65.5° 

Table 1. Characteristics of the three VHR satellite images 
acquired over the study field. 

 
Part of the mega city Istanbul, Turkey is chosen as test field for 
the project, mainly because it is a city characterized by an 
intense urban growth. The city is very compact and 
concentrated along the Bosphorus strait. The high resolution 
test area covers the overlapping area between the Ikonos 2002 
stereo pair and the 2005 image and covers an area of 
approximately 60 km2, containing Istanbul’s historic peninsula 
and going up to the north to the urban fringe. It concerns a 
densely built-up area with a height range of 220 m with the 
lowest point at sea level and geo-morphologically characterized 
by a hilly landscape. 
 
 

4. SURFACE MODEL GENERATION 

In following subsections, the successive steps of the applied 
methodology for city surface model generation, based on 
(tri)stereoscopic VHR satellite imagery, are elucidated. The 
emphasis is especially laid on those phases were research is 
done to cope with the complexity of an urban environment. 
 
4.1 Tri-stereoscopic approach 

Instead of the standard stereo mapping with two images a tri-
stereoscopic approach is followed. Generation of a DSM using 
more than two overlapping images has some interesting 
characteristics. First of all, this approach strengthens the image 
orientation because of the redundancy in the geometric 
reconstruction. Points in object space can be calculated by the 
best fit of N convergent image rays instead of two. Secondly the 
redundancy leads to a more robust matching, as mismatches and 
a unique solution, in case of multiple matching candidates, can 
be easier identified. In the stereo case, an object point cannot be 
matched if it is located in an occluded area on one or both 
images. In the tri-stereoscopic case, the third image is taken 
from a different viewing angle. Consequently this leads to a 
shift of the occluded areas in the image and enlarges the chance 
of a successful match.  
 
Processing of the Ikonos triplet is mainly done with a 
photogrammetric software platform, called SAT-PP. SAT-PP is 
able to perform image matching on more than two images 
simultaneously (Zhang & Gruen, 2006). This is in contrast to 
most photogrammetric software packages that are only able to 
match two images at the same time. 
 

90

       CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 
 

 
Figure 2. SAT-PP workflow © Chair of Photogrammetry and 

Remote Sensing ETH Zurich. 
 

4.2 Preprocessing of the satellite data 

Before processing the VHR imagery a contrast enhancement is 
executed as this leads to a more reliable image matching. 
Especially between images of the same area but taken at 
different dates from different orbits large radiometric 
dissimilarities can occur due to different illumination and 
atmospheric conditions, leading to poor matching results. To 
enhance the contrast for each image individually and to equalize 
the radiometric differences between the imagery, a Wallis filter 
was applied (Wallis, 1976).  
 
The general form of a Wallis filter is given by: 
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with  gw(x,y) and g(x,y)  =  filtered and original image 
         mg and sg  =  original mean and standard deviation values 
         mh and sh =  target value for mean and standard deviation 
         c and b     =  contrast expansion and brightness forcing cte 

 
The Wallis filter performs a non linear, locally adaptive contrast 
enhancement. Actually a large kernel divides the image in 
different sections and within each section the local contrast is 
optimized. Applying a Wallis filter on the original images does 
not only result in an enhancement and sharpening of texture 
patterns in areas of low contrast and equal overall contrast but 
normalizes also the radiometry, especially between images 
taken at different dates. The effect of radiometric enhancement 
of very high resolution satellite imagery is illustrated in figure 3 
& 4. The Wallis filter enhances existing texture patterns, 

leading to optimization of the contrast in shadow areas. Note 
that in the shadow rich areas axis-aligned artefacts are 
introduced due to the Wallis filtering. 
 

 

 

 
 

Figure 3. Extract of original 11-bit Ikonos image, illustrating an 
area with high buildings. There is very little contrast within the 
shadow areas, leading to mismatches during the image matching 

process. 
 

 

 
 

Figure 4. Extract of Wallis-filtered 11-bit Ikonos image. The 
radiometric filter enhances the existing texture patterns locally, 

leading to optimization of the contrast in the shadow areas. 
 

Also an adaptive smoothing filter is applied to reduce image 
noise while sharpening edges. As noise is an important data-
source for mismatches, reducing it further improves the quality 
of the surface model. 

 
Next to the radiometric enhancement a method for geometric 
normalization was devised. The Ikonos 2002 stereo couple is 
epipolar projected and suitable for stereo applications. As the 
2005 Ikonos image is taken from a different orbit, the images 
are displaced to each other and the internal geometry will be 
slightly different because of the different scan direction. 
Geometric normalization of the 2005 Ikonos image with the 

01
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2002 STEREO product imagery is done by image co-
registration in ENVI. The 2005 image is resampled according a 
first-order polynomial transformation to geometrically align the 
multi-temporal imagery. A first-order polynomial 
transformation corrects for rotation, translation, scaling and 
shearing. As the orientation of the 2005 image has changed after 
registration, it was necessary to calculate a posteriori RPCs for 
the resampled image, which is not a straightforward task. Ad 
hoc RPC generation was done in collaboration with a team of 
Prof. Dr. Crespi from the Area di  Geodesia  e  Geomatica,  La 
Sapienza University of Rome. An algorithm, developed and 
embedded in the software package SISAR (Software per 
Immagini Satellitari ad Alta Risoluzione), makes it possible to 
generate RPCs starting from physical sensor models, image 
metadata, transformation parameters and a set of 15 to 20 
ground control points with known map coordinates (Bianconi, 
2008 and Crespi, 2009). Image coordinates for the GCPs were 
collected on the original and resampled 2005 Ikonos image. 
Based on this method, RPCs could be generated with an 
accuracy of 3.8 pixels in line direction and 5.1 pixels in sample 
direction. 
 
4.3 Bundle adjustment for image orientation 

During the bundle adjustment process, the rotation along the 
three axes and position of the sensor during image capturing is 
calculated for all images simultaneously according a least-
squares matching. At the same time the relationship between 
image and object space is described. To calculate the best fit for 
all images, initial values for internal and external orientation are 
needed though. As no information on the physical camera 
model of Ikonos is released, rational polynomial coefficients, 
provided by the image vendor, are used to calculate initial 
values for internal and external image orientation. The rational 
polynomial function model uses a general polynomial 
transformation to describe the mathematical relationship 
between object and image space, instead of a physical sensor 
model. The rational function model is the ratio of two 
polynomials and is derived from the physical sensor model and 
on-board sensor orientation (Grodecki & Dial, 2003).  
 
As RPCs are calculated from on-board sensor orientation data, 
satellite ephemeris and star tracker observations, the accuracy of 
image orientation can be refined by using ground control points. 
During a field trip to Istanbul the necessary GCPs for 
photogrammetric processing of the DSM’s were collected in 
close collaboration with the Istanbul Metropolitan Planning 
Centre (IMP-Bimtas). Because accurate large-scale ortho-
images were available for the study area and because of the 
difficulties of GPS measurements in the narrow streets of the 
densely built-up area, an approach was chosen to derive the 
GCP from ortho-images supplemented with 1:5000 scale 
topographic maps. 37 clearly visible GCPs were derived, 
homogeneous distributed over the study area. In total, 17 points 
with known map coordinates and clearly identifiable in all three 
images were used to describe the relationship between the 
imagery and terrain. The a priori geometric accuracy for the 
DSM extraction consists of an overall RMSE value of 0.79 m 
for X residuals, 0.78 m for Y residuals and 2.36 m for Z 
residuals. 
 
4.4 Epipolar geometry 

Before extracting the surface model, the original images are 
resampled to an epipolar orientation. Y-parallax is removed, 
while leaving the parallax in X-direction unresolved, which can 

be interpreted as height differences. This reduces the process of 
finding conjugate points in overlapping images from a two-
dimensional to a one-dimensional search algorithm along 
epipolar lines. 
 
4.5 Multi-image matching 

During the image matching process conjugate features need to 
be found automatically between the overlapping images. The 
surface model can be processed afterwards by calculation of 
height differences based on the measurement of the disparity 
between corresponding pixels. The applied algorithm works 
according a coarse-to-fine hierarchical matching strategy. Image 
pyramids consist of different versions of an image at 
exponentially decreasing resolutions. The bottom level of the 
pyramid contains the original image. The matching results of 
each higher pyramid level are used as approximations in the 
successive, lower level.  At each level also an intermediate 
DSM is generated from the matched features and is refined 
through the image pyramid. Based on all data in each pyramid 
level, the matching parameters are fine-tuned progressively. 
 
The matching algorithm is a combination of feature point, grid 
point and 3D edge matching. This redundancy leads to better 
constraints and more reliable results. Grid point matching is 
especially valuable in areas with less texture where conjugate 
feature points are hard to detect. For each grid point to be 
matched in the first image, the matching algorithm searches for 
the conjugate pixel in the other images that correlates the most 
by shifting a kernel of certain size along the epipolar line. A 
correlation constraint is used to identify possible matching 
candidates. The geometrically constrained cross-correlation or 
GC3 method is an extension of the standard cross-correlation 
technique (Zhang & Gruen, 2006). In case of more than one 
matching candidate, the information of multiple images, i.e. 
more than two, can provide geometric constraints which assist 
to identify a unique matching solution.  
 
3D edge matching is extremely valuable when dealing with 
urban areas, as they assist in modelling surface discontinuities. 
Edges are detected by the Canny operator (Canny, 1986). 
During surface model generation the matched edges will be 
taken into account as break lines to avoid smoothing effects. In 
Figure 5, illustrating matched edges in an urban area on Ikonos 
imagery can be seen that the main shape of most of the 
buildings is estimated quite well by detected edges. An 
important source of errors in edge detection is caused by 
building shadows. As shadow areas are being into large contrast 
with the surrounding pixels, edges will be detected at the 
shadow borders.  
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Figure 5. Edge detection & matching in an urban environment 
on Ikonos imagery. 

 
At a final stage a least-squares matching method, called 
modified multi-photo geometrically constrained matching 
algorithm, is performed using all matched points as 
approximations to detect mismatches and to further refine 
matching results. The MPGC algorithm combines the matched 
points with geometrical constraints, derived from multi-image 
ray intersection conditions and knowledge about the image 
orientation (Baltsavias, 1991). A Least Squares B-Spline 
Snakes is used to refine the matched edges.  For more details on 
the matching strategy we can refer to (Zhang & Gruen, 2006).  
 
During image matching, calculation of the position and height 
of each point or line is treated independently. To create a 
connected surface, the discrete measurements are interpolated. 
The resulting surface model is processed at a grid size of 3 
meters. The chosen resolution leads to the best equilibrium 
between detail and reduction of noise. As illustrated in figure 6 
& 7, the shape of big buildings and free-standing buildings is 
modelled well, while in the very dense urban area small 
buildings are merged into building blocks. 
 

 
 

Figure 6. Map view on extract of the 3m colour-coded DSM. 

 
 

Figure 7. Perspective view on extract of 3m color-coded DSM. 
The surface model represents Istanbul’s historic peninsula. 

 
4.6 Ortho-generation 

During ortho-generation phase the sensor geometry of the 
images, characterized by a parallel projection in along-track 
direction and perspective projection in across-track direction, 
can be transformed to map geometry based on the developed 
surface model. The surface model represents each pixel in its 
correct geometric position. Back-projection from the DSM to 
the image supplies the grey value or texture for the pixel. In 
case of an occluded pixel on the master image, texture 
information is extracted from a slave image or neighbourhood 
pixels in case of occlusion on all images. A ground sample 
distance of 1 m or 1 pixel is chosen for the ortho-image. 
 

 
 

Figure 8. Extract of 3m surface model, draped with 
panchromatic ortho-image for photorealistic visualization. The 

surface model represents Istanbul’s historic peninsula. 
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Figure 9. DSM draped with ortho-image, representing an 
industrial area at the urban fringe. 

 
 

5. SPATIAL FILTERING 

To further improve the global quality of the surface model and 
especially to reduce smoothing effects, spatial filtering is 
applied on the height values of the DSM. In a first approach, an 
order statistics filter is applied on the surface model. More 
specific a small 7 by 7 median filter is used, which not only 
reduces noise and outliers but also enhances edges. The value of 
each pixel is changed by looking at the surrounding pixels 
within the 7 by 7 kernel and arranging all values in sequential 
order. Next, the 50th percentile value is assigned to the centre 
pixel. As the median value is assigned, the influence of outliers 
within the moving window will be reduced. The outcome of 
applying a median filter on an urban surface model is further 
discussed in (Jacobsen, 2006). 
 

 
 

Figure 10. Position and orientation of profile A through 3 
similar buildings. 

 

 
Figure 11. Graphs illustrating profile A before and after median 

filtering of the 3 m resolution tri-sterescopic surface model. 
After median filtering, local variations and outliers are reduced 

and the rooftops are at a more or less constant level. 
 
A method is also developed to further improve building shapes 
based on the knowledge of building contours. Flat roofs can be 
assumed for the buildings within the study field. A first attempt 
failed, where the matched edges were used as approximations 
for building contours. As can be derived from figure 5, the 
extracted edges are not closed polygons and sometimes they are 
connected together with edges of neighbouring buildings. This 
made the conversion to individual building contours extremely 
complex.  
The results of a second approach are more effective. An external 
dataset is used, consisting of 2D building footprints which were 
plotted on aerial imagery by IMP-Bimtas for cadastral purposes.  
Fitting of the 2D building footprints on the generated surface 
models, allows to extract all man-made objects.  Subtraction of 
the DSM with the generated building model results in a terrain 
model (DTM) with gaps where the buildings were positioned. 
Distinction between a terrain model layer and a building model 
layer allows to apply different spatial filters adapted to the 
specific needs of the layer. The terrain model without man-
made objects should be a continuous and smooth surface. As 
smoothing constraints are very important for the DTM, a 
median filter with a large kernel size of 18 by 18 pixels is used.  
On the other hand, smoothing must be minimized for the 
building layer to model shape and discontinuities of man-made 
objects as good as possible. As the “bell-formed” shape of 
buildings in an unfiltered surface model is mainly an 
underestimation of height, an upper quartile filter with a small 
kernel of 7 by 7 is applied on the building layer two times 
within the boundaries of each footprint. An upper quartile filter 
is a nonlinear, order statistics filter and returns the 75th 
percentile value within the kernel. Spatial filtering of the height 
values within each building footprint reduces the local 
variations and puts the roof height on a more or less constant 
level. In a final step the DTM is merged with the building layer 
to obtain a final filtered DSM. 
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Figure 12. Combination of DTM and building layer to a final 

DSM, covering the high resolution study field. 
 
 

6. GEOMETRIC ACCURACY ANALYSIS 

A dataset of 35 check points, measured with GPS and evenly 
distributed over the study area, is used to check the geometric 
accuracy and quality of the extracted models from stereopair 
and triplet. It concerns independent ground control points, 
meaning that they are not used in the photogrammetric 
processing of the models. Check points are preferred because of 
the lack of a more accurate reference surface model. Besides, 
the uncertainty of height errors in a reference map is much 
bigger than for discrete measured values in the field. 
Comparison of a measured height value and the calculated 
height value in the model at a certain location gives statistical 
information about the accuracy by which reality is modelled.  
Some calculated statistics, quantifying the geometric accuracy 
are presented in table 2. Distinction is made between the 
standard stereoscopic and tri-stereoscopic approach. The a 
priori geometric accuracy reflects the quality and robustness of 
the image orientation. RMS error in X, Y and Z is given for the 
total of 17 ground control points that were used to fix the 
mathematical relationship between image and object coordinate 
space. For X and Y, sub-pixel accuracy is obtained in both 
approaches. RMSE for the Z component is less than 3 pixels. 35 
independent check points are used to calculate the RMS error 
for Z and the mean Z difference between measured and 
calculated value by the model. For both statistics the value is 
less than 3 pixels. 
 

Imagery No. of GCP RMSX (m) RMSY (m) RMSZ (m) No. Of CP RMSZ (m) Mean dZ (m)

Stereoscopic 17 0.68 0.72 2.44 35 2.61 2.21

tri-stereoscopic 17 0.79 0.78 2.36 35 2.47 2.06

DSM geometric accuracyA priori geometric accuracy

 

Table 2. Geometric accuracy analysis. 
 

Visual analysis of the models shows big improvements of the 
quality for the surface model derived from the Ikonos triplet. 
Noise is reduced and smoothing effects of man-made object are 
reduced to a minimum, however the improvements do not 
reflect in the quantitative accuracy check. The RMSE and mean 
values are slightly better for the triplet than for the stereopair. 
This is due to the fact that the improvements are mainly situated 
around buildings and other steep changes in elevation. Check 
points are mostly measured in open terrain so that they are 
clearly identifiable on the imagery. Within these non-complex 
areas the surface model from the stereopair gives also optimal 
results. To have a better quantification of the improvements, 
future work should involve the collection of rooftop heights for 
a set of buildings and comparison between the collected ground 
truth and the produced models.  
 
 

7. CONCLUSION 

In this treatise an approach is proposed to extract an urban 
surface model in a semi-automatic way directly from multi-
scopic Ikonos imagery, in contrast to surface models derived 
from manual plotting of building rooftops. The input of the 
operator during photogrammetric processing is reduced to a 
minimum. Interesting advantages are that it is less labor-
intensive and that the outcome is independent from human 
interpretation. Off course manual plotting of buildings will lead 
to a higher accuracy and more detailed information, but this task 
is very time consuming and will not be cost-effective in some 
situations. As from the perspective of the geometric accuracy, as 
from the visual analysis we can conclude that the outcome is 
encouraging and that acceptable results are reached. At different 
levels of the photogrammetric processing of the imagery, efforts 
are done to cope with the complexity of modeling an urban 
environment. Occlusion and consequently mismatches are 
reduced by combining the redundant information of a third 
image with a stereopair. Radiometric and geometric 
dissimilarities between the multi-temporal imagery are 
diminished by preprocessing the individual images. 
Combination of three different matching algorithms gives 
redundancy and geometric constraints leading to dense and 
reliable matching results. Finally, spatial filtering is applied on 
the height values of the DSM to reduce smoothing effects and 
enhance global DSM quality. 
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ABSTRACT: 
The final purpose of this study is to texture map existing 3D building models using calibrated images acquired with a terrestrial 
vehicle. This paper focuses on the preliminary step of automated selection of texture images from a sequence. Although not 
particularly complex, this step is particularly important for large-scale facade mapping where thousands of images might be 
available. Three methods inspired from well-know computer graphics techniques are compared: one is 2D-based and relies on the 
analysis of a 2D map; the two other methods use the information provided by a 3D vector database describing buildings. The 2D 
approach is satisfactory in most cases, but facades located behind low buildings cannot be textured. The 3D approaches provide 
more exhaustive wall textures. In particular, a wall-by-wall analysis based on 3D ray tracing is a good compromise to achieve a 
relevant selection whilst limiting computation. 
 

1. INTRODUCTION 

With the development of faster computers and more accurate 
sensors (cameras and lasers), the automatic and large-scale 
production of a virtual 3D world very close to ground truth has 
become realistic. Several research laboratories around the world 
have been working on this issue for some years. Früh and 
Zakhor have proposed a method for automatically producing 
3D city models using a land-based mobile mapping system 
equipped with lasers and cameras; the laser points are registered 
with an existing Digital Elevation Model or vector map, then 
merged with aerial LIDAR data (Früh and Zakhor, 2003; Früh 
and Zakhor, 2004). At the French National Geographical 
Institute (IGN), the mobile mapping system Stereopolis has 
been designed for capturing various kinds of information in 
urban areas, including laser points and texture images of 
building facades (Bentrah et al., 2004). The CAOR laboratory 
from ENSMP has also been working on a mobile system named 
LARA-3D for the acquisition of 3D models in urban areas 
(Brun et al., 2007; Goulette et al., 2007), based on laser point 
clouds, a fish-eye camera, and possibly an external Digital 
Elevation Model. Recently, a number of private companies 
have commercialized their own mobile mapping systems for 3D 
city modeling, like StreetMapper or TITAN for instance 
(Hunter, 2009; Mrstik et al., 2009). The purpose of such 
systems is often the 3D modeling as well as the texture 
mapping of the 3D models.  
In this study we are interested in texturing existing 3D building 
models by mapping terrestrial images onto the provided façade 
planes.  As a part of the mapping strategy, one first needs to 
determine which images each façade can be seen from. It is 
particularly important for large-scale facade texture mapping 
where thousands of images can be available. Every single 
image can be relevant for the final texturing stage. There are 
few references on this issue. In (Pénard et al., 2005) a 2D map 
is used to extract the main building facades and the 
corresponding images. All the images viewing at least a part of 
a façade are selected. In (Haala, 2004), a panoramic camera is 
used and a single image is sufficient to provide texture for 
many façades. Given a façade, the best view is the one 
providing the highest resolution. It is selected by analyzing the 
orientations and distances of the building facades in relation to 
the camera stations. In (Allène, 2008), a façade is represented 
by a mesh. Each face of the mesh is associated to one input 
view by minimizing an energy function combining the total 

number of texels representing the mesh in the images, and the 
color continuity between two neighbouring faces.  
In our study, only two triangles per facade are available, and a 
façade texture generally consists of a mixture of 4 to 12 input 
views. The following mapping strategy has been chosen for 
texturing a given façade: 

- Pre-selecting a set of relevant input images, from 
which the façade can be seen; 

- Merging these images into a single texture image; 
- Registering the texture image with the existing façade 

3D model. 
This paper only focuses on the first stage. The purpose of this 
operation is to select a set of potentially useful images based on 
purely geometrical criteria. The generation of a seamless 
texture image without occlusion artifacts will be handled within 
the second stage. Three possible approaches for the image pre-
selection are presented and discussed. The first approach is  
similar to the one used in (Pénard et al., 2005) and relies on the 
analysis of a 2D map. The two other methods use the 
information provided by a 3D vector database describing 
buildings. All methods are based on standard techniques 
commonly used in computer graphics for visibility 
computations, namely the ray-tracing and z-buffering 
techniques (Strasser, 1974). These two techniques have now 
been used for decades and are very well known in the computer 
graphics community. They can easily be optimized and 
accelerated via a hardware implementation. 
This paper is organized as follows. Section 2 presents the test 
data set used for this study. Sections 3, 4 and 5 detail the three 
selection methods. The results and perspectives are discussed in 
section 6. 
  

2. TEST DATASET 

The test area is a part of the historical center of the city of 
Rennes in France. It is 1 km² wide and corresponds to the 
densest part of the city. Existing 3D building models were 
provided with an absolute accuracy around 1m. It contains 1475 
buildings consisting of 11408 walls. The texture image database 
associated to the area was simulated via a virtual path created 
through the streets. A point was created every 5 meters along 
this path. Each point is associated to two cameras facing the left 
and the right sides of the path. The camera centers are located 
at 2.3 meters above the ground in order to simulate a vehicle 
height. The internal and external parameters of the cameras are 
approximately known. The path is about 4.9 kilometers long, 
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and it contains 990 points and 1980 cameras views (see Figure 
1). It includes loops, self-intersections and close parallel roads. 
As a result a building wall can be seen from several locations 
within the path. 

 
Figure 1. Test area, Rennes historical center. The virtual path is 

depicted in red. 
 

3. 2D RAY TRACING 

3.1 Principle 

The 2D approach is based on ray-tracing. Each camera is 
analyzed in turn. The walls are represented by 2D segments. 
For each camera a set of compatible wall segments is pre-
selected using three criteria (see Figure 2): 

- Distance criterion: the wall is located within a given 
distance from the camera center.  

- Half-plane criterion: at least one point of the wall 
segment is located in the half-space in front of the 
camera 

- Backface culling criterion: the wall is facing the 
camera. 

The compatible wall segments define a set of candidate walls 
that might be visible from the current camera. An example of 
pre-selection is shown in Figure 10a-b. 

 

                        
 
 

                            
 
 
Figure 2. The three criteria for the selection of candidate walls: 

(black=pre-selected walls, red=rejected walls)  
 

The 2D-tracing technique is then applied to the candidate wall 
segments. First a beam of 2D lines is defined passing through 
the camera center point and regularly distributed within the 
field of view of the camera. Then the closest intersected 
candidate wall segment is selected as a visible wall. When all 
the cameras have been processed then each wall can be 
associated to the list of cameras that can view it. 
 
3.2 Test results 

The method was tested with various numbers of rays per 
camera. The distance threshold was arbitrarily set to 150m, 
distance above which the texture resolution is low enough to be 
discarded. The computing time includes reading and exporting 
steps. Numerical results are shown in Table 1. Between 10 and 
13% of the walls are detected as visible by the process. Figure 3 
shows the evolution of the wall number and the computing time 
with the number of rays. A qualitative example of selected 
walls can be found in Figure 10c. 
 

Ray # Total # of 
selected walls 

Avg # of cameras 
per wall 

Computing 
time 

10 1176 (10.3%) 4.54 7s 
50 1391 (12.1%) 4.95 11s 

100 1450 (12.7%) 5.04 17s 
500 1507 (13.2%) 5.14 50s 

Table 1. Results of 2D ray tracing 
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Figure 3 –Number of visible walls and computing time in 
relation to the number of rays 
 
3.3 Discussion 

The variations in the number of selected walls come either from 
walls located far away of the camera, or from walls almost 
aligned with the camera center. When the number of rays is 
small, then many walls are located between two rays and are 
therefore not selected (see Figure 4). In our configuration, a 
number of rays around 100 seems to be a good compromise to 
get a maximum number of relevant images per building wall. 
The main advantage of the 2D approach is the speed. It is also 
very simple and quick to implement. However it does not take 
building heights into account. Yet a low building (garage, shop, 
etc) may only mask the bottom part of higher buildings located 
behind it, especially if the camera is located on the top of a 
vehicle (see examples in Figure 5 and Figure 11a-c). Therefore 
it seems very important to make use of 3D information within 
the selection process. 

(a) distance criterion 

(c) backface culling criterion 

(b) half-plane criterion 
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Figure 4. Example of a “missed” wall. (a) 10 rays per camera: 

the current wall is “missed” by several cameras (red 
dots); (b) 50 rays per camera: the current wall is 
seen by all the cameras (black dots) 

 
 

 
(a) 3D view 

 

              
                                                 

 
 

Figure 5. Example of incomplete camera selection  
 

4. 3D Z-BUFFERING 

4.1 Principle 

The second approach is 3D-based and relies on a z-buffer 
technique. Each camera is analysed in turn. A set of candidate 
walls is first associated to the current camera as in described in 
section 3, using distance, half-plane and backface culling 
criteria. The camera is then associated to a label image 
identifying the walls seen by the camera, and a depth image 
indicating the distance from the camera centre to the walls. 
Finally, after all the cameras have been processed, each wall 
can be associated to the list of cameras that can view it. 

 
4.2 Test results 

In order to reduce computing time, the distance and label 
images are sub-sampled at coarser resolutions. The tests were 
performed at a sampling resolution of 5, 10 and 20 pixels.  
They are shown in Table 2. It is important to note that the 
algorithm was not optimised and the graphical card not used. 
An example of depth image is shown in Figure 6. 
 

Z-buffer 
resolution 

Image size 
(hxw) 

Total # of 
visible 
walls 

Avg # of cam. 
per wall 

Computing 
time 

5 pixels 216x384 2310 
(20.2%) 

4.40 61min58s 

10 pixels 108x192 2249 
(19.7%) 

4.41 52min36s 

20 pixels 54x96 2186 
(19.2%) 

4.35 43min54s 

Table 2. Results of 3D ray tracing 
 

 
Figure 6. Example of a depth image  

 
4.3 Discussion 

Using this approach, 50% more walls can be textured. In 
particular, all facades located behind other buildings can now 
be textured, whereas they were discarded with the 2D approach. 
In the example of Figure 10d, the circled area shows an 
example of a high building visible from the current camera but 
only selected with the 3D approach. As the measures are very 
dense, even small walls, walls distant from the path or wall 
aligned with the path can theoretically be textured.  
In return, many selected walls are only partly visible, and 
would actually have a very poor texture quality. It is important 
to introduce a contribution culling technique, in order to discard 
wall images inappropriate for texture mapping. In the current 
implementation, another drawback of the method is the 
computing time. Using a hardware implementation directly into 
the Graphical Processing Unit of the graphic card should solve 
this problem. A hierarchical z-buffer technique could also be 
investigated (Greene, 1993). Finally, the selection process must 
be entirely completed before being able to further process a 
façade, which might not be compatible with a large-scale 
production process.  
 

5. 3D RAY TRACING 

5.1 Principle 

The last approach combines the main advantages of the two 
previous ones: speed and use of 3D information. It is a 3D 
extension of the 2D approach based on ray tracing. However, 
the analysis is performed wall-by-wall rather than camera-by-
camera. Given a wall, a set of candidate cameras is selected 
using a method similar to the one described in section 3:  

(a) 10 rays per camera (b) 50 rays per camera 

Current wall 

(c) Cameras selected with 
the 2D approach 

(b) Cameras seeing the 
red wall 

99

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 
 
 

- The camera is located within a given distance from 
the wall (distance measured at closest point).  

- The camera center point is located in the half-space in 
front of the wall. 

- The camera is facing the wall plane. 
In order to reduce computing time and improve texture quality, 
an additional criterion has been introduced: cameras that are 
almost aligned with the wall plane are discarded. A maximum 
threshold on the angle defined by the wall plane and the camera 
directions is introduced (see Figure 7). This filtering step is an 
extension of the backface culling criterion. 
 

 
 

Figure 7. Angle criterion for the pre-selection of candidate 
cameras: the cameras with their direction vector in 
the red angular area are discarded 

 
For each candidate camera a grid on the camera plane is 
defined. Each grid point defines a 3D ray passing through the 
camera center point. The 3D rays not intersecting the current 
wall are ignored. The remaining 3D rays are tested with respect 
to all the walls compatible with the camera (pre-selection 
method described in section 3): any ray intersecting a wall face 
closer than the current one is discarded. The candidate camera 
is finally selected as viewing the current wall, if at least one of 
the rays has not been discarded. The process is illustrated in 
Figure 8. 
 

 
Figure 8. Principle of 3D ray tracing: the rays launched from 

the tested camera are discarded if they do not 
intersect the current wall (see rays on the extreme 
sides) or if they first intersect a closer wall (see rays 
on the left) 

 
5.2 Test results 

The method was tested with 10x10 and 20x20 rays per camera, 
with and without threshold on the angle during pre-selection. 
The threshold on angle was set to 

8
3π radians when applied. The 

distance threshold was set to 150m (identical to 2D ray tracing). 
Numerical results are shown in Table 3. An example of selected 
walls is illustrated in Figure 10d.  
 

Method Total # of 
visible walls 

Avg # of 
cam. per wall 

Computing 
time 

10x10 rays 1349 (11.8%) 4.36 3min51s 
20x20 rays 1604 (14%) 4.49 11min45s 
10x10 rays 
αmax = 3*Π/8 

1032 (9%) 4.55 2min49s 

20x20 rays 
αmax = 3*Π/8 

1213 (10.6%) 4.56 8min25s 

Table 3. Results of 3D ray tracing 
 
5.3 Discussion 

As expected from a 3D-based approach, the walls located at the 
background can be textured if they are high enough. Fewer 
texture images are selected with the 3D ray-tracing approach 
than with the z-buffer approach, but they generally have a 
better quality. It is not surprising as ray tracing is not a dense 
approach and most small wall textures are naturally discarded. 
In the example of Figure 10e, only the relevant facade of the 
high building located at the back of the block was selected as 
visible. Figure 11 shows another example of distant facade that 
can be textured only with a 3D approach.  
The additional pre-selection criterion on angles removes 
sidelong walls, which are usually seen by few cameras. It 
improves the relevance of the selection by discarding walls 
with a poor texture resolution. Using 20x20 rays instead of 
10x10 rays significantly increases the total number of visible 
walls, but further tests are needed in order to find out whether 
these additional walls can be textured with a good enough 
quality. Importantly, as each wall is processed in turn, the 
texturing stage can be performed without requiring the 
complete processing of the path. 
The computing time is intermediate between 2D ray tracing and 
3D z-buffering. In our implementation many calculations are 
redundant. A spatial division of the space could be performed in 
order to make use of object-space coherence and accelerate ray 
tracing (Glassner, 1984; Jevans and Wyvill, 1989).  

 
6. CONCLUSION AND PERSPECTIVES 

The 2D approach is satisfactory in most cases, and it is fast, 
simple and easy to implement. However any building located 
behind another cannot be textured.  
The 3D approaches provide more exhaustive wall textures, 
including texture images for high building walls located at the 
back of lower buildings. The use of the 3D dimension makes 
the visibility estimation closer to ground truth, and the selection 
process more efficient. Although both ray-tracing and z-buffer 
techniques can be implemented very efficiently, the approach 
based on 3D ray tracing is a good compromise to achieve a 
relevant selection. It also seems important to prefer a wall-by-
wall analysis, as further texturing stages can then be performed 
without requiring the complete processing of the path. The z-
buffering technique could be considered if the resulting depth 
image is a valuable source of information in further steps.  
The main constraint for the 3D approaches is obviously the 
availability of a 3D building database. Given a 2D map, the 3D 
information can be derived from a correlation-based or LIDAR 
Digital Elevation Model, or even from the analysis of 
architectural plans or building permits. In our opinion, a coarse 
3D city model is sufficient to significantly improve the 
relevance of the texture selection. 
 
We are now working on refining the selection with texture 
quality criteria rather than just visibility. The texture quality 

current wall 

tested camera 

discarded 
rays 

discarded 
rays 

current 
wall 

 

Cameras  

rejected  

accepted 

αmax 
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depends on its resolution and varies with the distance from the 
camera to the facade.  
Another possible evolution is to use additional 3D information 
to predict occlusions. A Digital Terrain Model could be used to 
predict hidden parts due to hills or embankments (case of a hill 
masking buildings facades located on the other side of a square 
for instance). If available, a complete 3D city model including 
vegetation and detailed building roofs would help better 
estimate the visibility of a given façade. More generally, an 
environment mask as in described in (Wang et al., 2002) could 
be introduced. 
Another parameter to take into account is the uncertainty on the 
GPS/IMU data which introduces an uncertainty on the camera 
position and direction. In order to guarantee a complete 
selection, a simple solution would be to dilate each wall 
polygon by the maximal distance induced by the positioning 
uncertainty. In a similar way, the influence of the input 3D 
model accuracy should be investigated. 
For this particular study, only synthetic data have been used. In 
the future we will be working on real data, and the influence of 
both the positioning error and the 3D model accuracy will be 
studied. Figure 9 gives an idea of what we would like to 
automatically achieve at a large scale. Note that the side facade 
located at the top right of the image cannot be textured if the 
image selection process is only 2D-based. 
 

 
Figure 9 – 3D virtual view of the historical centre of Rennes  

 

REFERENCES 

Allène, C., Pons, J.P. and Keriven R., 2008. Seamless image-
based texture atlases using multi-band blending. Pattern 
Recognition, ICPR 2008. 
 
Bentrah, 0., Paparoditis, N., Pierrot-Deseilligny, M., 2004. 
Stereopolis : An Image Based Urban Environments Modelling 
System. In International Symposium on Mobile Mapping 
Technology (MMT), Kunming, China, March 2004.  
 
Brun, X., Deschaud, J.E. and Goulette, F., 2007, On-the-way 
City Mobile Mapping Using Laser Range Scanner and Fisheye 
Camera,  In International Symposium on Mobile Mapping 
Technology (MMT), Padua, Italy2007. 
 
Früh, C., and Zakhor, A., 2003. Constructing 3D City Models 
by Merging Aerial and Ground Views. IEEE Computer 
Graphics and Applications, 23(6), Nov. 2003. 

 
Früh, C. and Zakhor, A., 2004. An Automated Method for 
Large-Scale, Ground-Based City Model Acquisition. 
International Journal of Computer Vision, 60(1), pp. 5-24. 
 
Glassner, A., 1984. Space subdivision for fast ray tracing. 
IEEECG&A, 4(10):15-22, Oct. 1984. 
 
Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S. and 
Laurgeau, C., 2007. An Integrated On-board Laser Range 
Sensing System for On-the-way City and Road Modelling. In 
ISPRS Comm. I Symposium, Marne-la-Vallée, France, 2004. 
 
Greene, N., Kasse, M., Miller, G., 1993. Hierarchical Z-buffer 
visibility. In Proc. Of the 20th conf. On Computer graphics and 
interactive techniques, Anaheim, CA, 1993. 
 
Haala, N., 2004. On the refinement of urban models by 
terrestrial data collection. In XXth ISPRS Congress, Vol. 35, 
Part B, Istanbul, Turkey, 2004. 
 
Hunter, G, 2009. Streetmapper mobile mapping system and 
applications in urban environments. In ASPRS Annual 
Conference, Baltimore, USA, 2009 
 
Jevans, D. and Wyvill, B. Adaptive voxel subdivision for ray 
tracing. Proc. Graphics Interface '89 , 164-172, June 1989. 
 
Mrstik, P., and Kusevic, K., 2009. Real Time 3D Fusion of 
Imagery and Mobile Lidar, ASPRS Annual Conference, 
Baltimore, USA, 2009. 
 
Pénard, L., Paparoditis, N. and Pierrot-Deseilligny, M., 2005. 
3D Building Facade Reconstruction under Mesh Form from 
Multiple Wide Angle Views, In IAPRS vol. 36 (Part 5/W17), 
2005. 
 
Strasser, W. Schnelle kurven und Flächendarstellung auf 
graphishen Sichtgeräten, Ph.D. Thesis D83, Technical 
University of Berlin, Germany, 1974 
 
Wang X., Totaro S., Taillandier F., Hanson A. R. and Teller S., 
2002. Recovering Facade Texture and Microstructure from 
Real-World Images. Proc. of the 2nd International Workshop 
on Texture Analysis and Synthesis in conjunction with 
ECCV'02, pp. 145-149, Copenhague, Denmark, June 2002.   
 
 

101

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 

 
Figure 10. Results of the various selection methods 
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Figure 11. Example of a low building masking a façade 
 

(a) Building heights 
(blue=low, orange=high) 

(b) Pre-selected building 
walls (orange) 

(c) Walls selected with 2D 
ray tracing (red) 

(d) Walls selected with 3D  
z-buffers (red) 

Camera 

Camera 

Camera 

(e) Walls selected with 3D  
ray tracing (red) 

Camera 

(a) Real view 

(b) Virtual view of the input 3D model 

(c) Result of the camera selection by 2D ray-tracing: 
no camera was detected for the current wall 

 

(d) Result of the camera selection by 3D ray-tracing: 
8 cameras were found viewing the current wall. 

 

Current wall 

Current wall 
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ABSTRACT:

In this paper, a near-realtime system for classification of GIS-objects is presented using multi-sensorial imagery. The system provides
a framework for the integration of different kinds of imagery as well as any available data sources and spatial knowledge, which
contributes information for the classification. The goal of the system is the assessment of infrastructure GIS-objects concerning their
functionality. It enables the classification of infrastructure into different states as destroyed or intact after disasters such as floodings
or earthquakes. The automatic approach generates an up-to-date map in order to support first aid in crisis scenarios. Probabilities are
derived from the different input data using methods such as multispectral classification and fuzzy membership functions. The main core
of the system is the combination of the probabilities to classify the individual GIS-object. The system can be run in a fully automatic
or semi-automatic mode, where a human operator can edit intermediate results to ensure the required quality of the final results. In this
paper, the performance of the system is demonstrated assessing road objects concerning their trafficability after flooding. By means of
two test scenarios the efficiency and reliability of the system is shown. Concluding remarks are given at the end to point out further
investigations.

1 INTRODUCTION

A significant increase of natural disasters such as floodings and
earthquakes has been observed over the past decades (Kundzewicz
et al., 2005). There is no doubt that the disasters’ impact on the
population has dramatically increased due to the growth of pop-
ulation and material assets. The regrettable death of people is
accompanied by heavy economic damage, which leads to a long-
term backslide of the regions hit by the disaster. This situation
calls for the development of integrated strategies for prepared-
ness and prevention of hazards, fast reaction in case of disasters,
as well as damage documentation, planning and rebuilding of in-
frastructure after disasters. It is widely accepted in the scientific
community that remote sensing can contribute significantly to all
these components in different ways, in particular, due to the large
coverage of remotely sensed imagery and its global availability.

However, time is the overall dominating factor once a disaster
hits a particular region to support the fast reaction. This becomes
manifest in several aspects: firstly, available satellites have to be
selected and commanded immediately. Secondly, the acquired
raw data has to be processed with specific signal processing algo-
rithms to generate images suitable for interpretation, particularly
for Synthetic Aperture Radar (SAR) images. Thirdly, the inter-
pretation of multi-sensorial images, extraction of geometrically
precise and semantically correct information as well as the pro-
duction of (digital) maps need to be conducted in shortest time-
frames to support crises management groups. While the first two
aspects are strongly related to the optimization of communication
processes and hardware capabilities, at least to a large extend, fur-
ther research is needed concerning the third aspect: the fast, inte-
grated, and geometrically and semantically correct interpretation
of multi-sensorial images.

Remote sensing data was already used in order to monitor natural
disasters in the year 1969 (Milfred et al., 1969). Particularly, in
the case of flooding a lot of studies are carried out to infer in-
formation as flood masks from remote sensing data (Sanyal and

Lu, 2004). The flooded areas can be derived from optical im-
ages (Van der Sande et al., 2003) as well as from radar images
(Martinis et al., 2009) via classification approaches. Zwenzner
(Zwenzner and Vogt, 2008) estimates further flood parameter as
water depth using flood masks and a very high resolution digital
elevation model. Combining this results with GIS data leads to
an additional benefit of information and simplifies the decision
making (Brivio et al., 2002, Townsend and Walsh, 1998). The
combination of the GIS and remote sensing data is often carried
out by overlaying the different data sources. But, there are only
few approaches which use the raster data from imagery to assess
the given GIS data. In (Gerke et al., 2004, Gerke and Heipke,
2008) an approach for automatic quality assessment of existing
geospatial linear objects is presented. The objects are assessed
using automatically extracted roads from the images (Wiedemann
and Ebner, 2000, Hinz and Wiedemann, 2004). However, in case
of natural disasters the original roads are destroyed or occluded
and, therefore, it is not possible to extract them using the original
methods. Hence, new approaches have to be developed which
assesses damaged and occluded objects, too. The integration and
exploitation of different data sources, e.g. vector and image data,
was discussed in several other contributions (Baltsavias, 2004,
Butenuth et al., 2007). However, there is a lack of methods which
assess the GIS data concerning its functionality using imagery
(Morain and Kraft, 2003).

In this paper, a classification system using remote sensing data
and additionally available information is developed to assess GIS-
objects. The main goal of the system is the automatic classifica-
tion and evaluation of infrastructure objects, for example the traf-
ficability of the road network after natural disasters. However,
the presented system can be transferred to other scenarios, such
as changes in vegetation, because its design is modular. A focus
is the integrated utilization of any available information, which
is important to ease and speed up the classification process with
the aim to derive complete and reliable results (Reinartz et al.,
2003, Frey and Butenuth, 2009). In comparison to the manual
interpretation of images the presented systems is very efficient,
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which is essential in crisis scenarios. Depending on the type and
complexity of the input data, the system can be run in a fully
automatic or semi-automatic mode, where a human operator can
edit intermediate results to ensure the required quality of the final
results.

Section 2 describes the generic near-realtime classification sys-
tem with the objective to classify and evaluate objects using re-
mote sensing and other available data. In Section 3 the system is
applied to road objects in case of natural disasters. Two test sce-
narios of flooded areas are used to verify the system. By means
of manually generated reference data, the applicability and effi-
ciency of the system is evaluated in Section 4. Finally, further
investigations in future work are pointed out.

2 CLASSIFICATION SYSTEM

The goal of the developed classification system is the assessment
of GIS-objects using up-to-date remote sensing data. The system
is designed in a general and modular way to provide the opportu-
nity to label GIS-objects into different states. Typical states de-
scribe the functionality of infrastructure objects as roads or build-
ings. The generic system embeds different kinds of image data:
multi-sensor as well as multi-temporal data. Additionally, any
kinds of available data sources and spatial knowledge, which con-
tributes information for the assessment, can be embedded. Typi-
cal examples are digital elevation models (DEM) and further GIS
information, e.g. land cover or waterways. The minimum re-
quirement of the system are the objects to be assessed and one
up-to-date image which provides the information for the assess-
ment.

up-to-date
map

SAR
Imagery 1

GIS-
object

Classification
System

Optical
Imagery 1

DEM

GIS

Time
Point t1

SAR
Imagery 2

Optical
Imagery 2

Time
Point t2

......

Classification
System

Figure 1: Classification system

Theclassification system depicted in Figure 1 can be subdivided
into different components. Starting point are the GIS-objects to
be assessed. Secondly, the input data as imagery or digital eleva-
tion models which contribute the information for the assessment.
In the following this information is calleddata. Thirdly, the clas-
sification system by itself and, finally, a resulting up-to-date map.

The fusion of multi-sensor images is an important issue, because
the corregistration between optical and radar images is still a cur-
rent research topic (Pohl and Van Genderen, 1998). Methods
such as mutual information can be applied for the system (Inglada
and Giros, 2004). The system has to deal with multi-temporal
images having the possibility to derive important information on
time. This leads to an even more complex corregistration pro-
cess. Change detection algorithms can provide information about
the variation of assessed objects. In this article the temporal fac-
tor is neglected, but will be an essential part in future research.

The main core of the system represents the classification. The
goal is to classify each object into a different stateSi. For each
object probabilities are derived belonging to a certain state. The
methods estimating the probabilities depends on the data: typ-
ical examples are multispectral classification or fuzzy member-
ship functions (Figure 2).

data 2

GIS-
Object

data 1

...

data n

method 2

method 1

...

method n

pd S1 1
, p pd S d S1 2 1 3

, ... ,

...

pd S2 1
, p pd S d S2 2 2 3

, ... ,

pd Sn 1
, p pd S d Sn 2 n 3

, ... ,

Figure 2: Derivation of probabilities from data using various
methods

Beside the derivation of the individual probabilities from each
data source the combination plays a decisive role:

pS1
= pd1,S1

⊗ pd2,S1
⊗ · · · ⊗ pdn,S1

pS2
= pd1,S2

⊗ pd2,S2
⊗ · · · ⊗ pdn,S2

...
pSi

= pd1,Si
⊗ pd2,Si

⊗ · · · ⊗ pdn,Si
.

(1)

The variablepdn,Si
denotes the probability that the stateSi oc-

curs given datadn. The indicesi andn describe the number of
available states and data, respectively. The resultpSi

shows the
probability that a GIS-object belongs to the stateSi. For each
type of data weightswn can be introduced in order to cope with
the different influence of information content. Hence, Equation 1
for one statei leads to:

pSi
= w1 · pd1,Si

⊗ · · · ⊗ wn · pdn,Si
. (2)

Finally, the object is assigned to the stateSi with the largest prob-
ability pSi

. A basic characteristic of the whole system is the
combination at the probability level in order to remain flexible
concerning the available data.

3 MODEL FOR ROAD OBJECTS

After describing the generic system, a model is shown which as-
sesses linear objects as roads after flooding. However, this model
is transferable to other linear objects like railways and further
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natural disasters such as avalanches, landslides or earthquakes.
In case of natural disasters the GIS-object can be divided into the
stateintact/usableor not intact/destroyed. Furthermore, a state
between these extrema is possible. Hence, a third statepossibly
not intact/destroyedis introduced, if the automatic approach can
not provide a reliable decision. In order to assess roads after a
flood disaster following states can be used:

• trafficable

• flooded

• possibly flooded

For every available data source the probability for each state has
to be derived. The methods which are employed to the different
data are shown in the following section.

3.1 Methods

A multispectral classification is accomplished in order to derive
different classes from the input imagery. The goal is to assess
each linear object individually without taking adjacent linear ob-
jects into account, because such kind of topological knowledge
about the connectivity of a road network is no more valid in case
of road networks hit by a natural disaster. Every linear object is a
polyline, which consists of several line segments. A line segment
is a straight line, which can be defined with two points. Every line
segment is assigned to a class using an segment-based multispec-
tral classification. To this end, a buffer is defined around each line
to investigate the radiometric image information. In many cases
additional information as the width of the line object can be used
in order to generate the size of the buffer region.

For the multispectral classification various classes have to be de-
fined depending on the underlying imagery in order to classify the
road segments into the three statestrafficable,floodedandpossi-
bly flooded. In case of optical imagery the classes road, water,
forest and clouds are convenient, because the class road corre-
sponds to the statetrafficable, the class water tofloodedand the
classes forest and clouds describe occlusions and therefore be-
long to the statepossibly flooded. If radar images are available
the class clouds can be neglected. Beside the assignment to a
class each individual line segment consists of a probability be-
longing to a classωi, which is derived from the k-sigma error
ellipsoid. The probability can be formulated aspωi

(~g), whereas
~g defines the gray values. The length of the vector is equivalent
to the number of channels.

Beside the imagery additional information such as digital eleva-
tion models or GIS data can be integrated in the system. The
methods to derive probabilities depend on the data. One method
are membership functions of fuzzy sets (Zadeh, 1965). Mem-
bership functions do not describe the likelihood of some event,
but they only characterize a degree of truth in vaguely defined
sets. Since it is often difficult to derive sound probabilities from
GIS data, membership functions provide an opportunity to infer
confidence values. To emphasize the distinction the membership
function is labeled asµ instead ofp.

The membership functionsµt(a), µf (a) are introduced if a dig-
ital elevation model is given. The functionµt(a) denote the be-
longing to the statetrafficablet depending on the altitudea. Sim-
ilarly µf (a) represents the statefloodedf . Both functions are
depicted in Figure 3. There are two thresholdsa1 anda2 which
determine the height of very likely flooded or trafficable areas, re-
spectively. The current water level lies between these thresholds,
which can be calculated by

a1 = ll − b1

a2 = lh + b2,
(3)

in which ll is the lowest andlh is the highest water level in the
scene. In order to involve variations due to flows and barriers
additional buffersb1, b2 are added.

0

1

a1 a2 Altitude

µf(a)

Water Level

µt(a)

0.5

Figure 3: Membership functions for flooded roads and trafficable
roadsderived from DEM

3.2 Combination of Probabilities

The core of the classification system is to combine probabilities
resulting from a multispectral classification with the degree of
truth of membership functions. In this section, an example is
shown which combines the derived probabilities from optical im-
ages with membership functions inferred from a digital elevation
model. By means of multispectral classification for each class
(waterw, roadr, foresto, cloudc) the corresponding probabil-
ity pωi

for i = {w, r, o, c} can be derived. On the other side,
the membership function provide the degree of truthµt(a) and
µf (a). Utilizing the knowledge that roads higher thana2 are def-
initely trafficable and roads lower thana1 are very likely flooded
a case differentiation is carried out:

µf (~g, a) =











µf (a) = 1 a ≤ a1

µf (a) · pωw
(~g) a1 < a < a2

µf (a) = 0 a ≥ a2

(4)

µt(~g, a) =











µt(a) = 0 a ≤ a1

µt(a) · pωr
(~g) a1 < a < a2

µt(a) = 1 a ≥ a2.

(5)

Variablea denotes the height of a road object. The road is as-
signed to the statefloodedSF if the degree of truthµf (~g, a) ex-
ceeds an thresholdt1, which can be pre-estimated via the stan-
dard deviation of the likelihood function resulting from the train-
ing data for water. The road is assigned to the statepossibly
floodedSPF , if µf (~g, a) is less thant1. The probabilityµt(~g, a)
is treated in an analogous manner. The road is assigned to the
statetrafficableST if µt(~g, a) exceeds a pre-determined thresh-
old t2. Otherwise, the road is again assigned to the statepossibly
floodedSPF . The road segments which are classified as forest
ωo or cloudsωc are assigned to the states in the following way:

a < a1 ⇒ floodedSF

a1 < a < a2 ⇒ possibly floodedSPF

a > a2 ⇒ trafficableST

(6)

105

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



In Figure 4 a schematic overview of the used classification sys-
tem is depicted. A multispectral classification is carried out to
assign the road objects to the different classes. The results of the
multispectral classification combined with the membership func-
tion leads to the assignment of the road objects to the different
states.

water forest clouds roads

possibly
flooded

flooded trafficable

Multispectral Classification

Figure 4: Schematic overview of the classification system

4 RESULTS AND EVALUATION

The presented system has been exemplarily tested with two sce-
narios representing flood disasters. In both cases roads are as-
sessed concerning their trafficability. The first scenario is the Elbe
flood in the year 2002 near Dessau, Germany. Three different
data sources are used for the assessment: Firstly, an IKONOS-
Image with four channels (red, green, blue and infrared), cf. Fig-
ure 5. The ground-sampling distance of the panchromatic chan-
nel is 1 meter and the color-channels is 4 meter. As second
source a digital elevation model with a resolution of 10 meters
is used. Finally, the objects to be assessed are taken form the
ATKIS (German Official Topographic Cartographic Information
System) database. The test scene covers an area of 33 km2, which
contains 5484 line segments. In the following investigations only
the road objects are studied.

The second study area is located in Gloucesterhire Region in
Southeast England. In July 2007 the record flood level at Tewkes-
bury was measured. During the flooding a TerraSAR-X scene in
StripMap mode with a spatial resolution of 3 meter was acquired.
The polarization is HH, which is more efficient than HV or VV
to distinguish flooded areas (Henry et al., 2003). The test scene
covers an area of of 9,5 km2. Additionally, linear membership
functions from the original rivers are derived and an automati-
cally extracted flood mask is used. As GIS-objects 522 roads
from OpenStreetMap are assessed.

The test scenarios are very appropriate to test the classification
system due to their diverse global context and the different kinds
of roads. The roads vary from paths to highways. Both test sce-
narios are evaluated using manually derived reference data. The
availability of reference data describing the real status of roads
during the flooding is very difficult caused by the fast changes of
the water level and the accessibility of the roads. One possibil-
ity is to derive the reference data from the image itself, which is
done for the Elbe scenario. This kind of reference data does not
describe the ground truth, but the information which is possible
to get from the studied image. In the case of the Gloucesterhire
scenario high resolution airborne image with a resolution of 20
cm are available. This imagery which was acquired half a day

later than the studied TerraSAR-X scene was used to infer the ex-
act ground truth. To draw conclusions from the following results,
it is important to consider the kind of used reference data.

The result of the Elbe scene is visualized in Figure 5. The red
lines refer to flooded roads, green lines to trafficable roads and
the yellow lines point out, that no decision is possible by the auto-
matic system. In Figure 6 a detail of the original IKONOS image
and the assessed roads is shown.

Figure 5: Automatic assessment of roads using the classification
system:flooded roads (red), trafficable roads (green) and possibly
flooded roads (yellow)

Figure 6: Detail of original and assessed IKONOS scene

Comparingthe result with the manually generated reference leads
to the numerical results shown in Table 1. ”Correct assignment”
means that the manually generated classification is identical with
the automatic approach. In the case of ”Manuel control neces-
sary” the automatic approach leads to the statepossibly flooded
whereas the manual classification assigns the line segments to
floodedor trafficable. The other way around denotes the expres-
sion ”Possibly correct assignment”. ”Wrong assignment”’ means
that one approach classifies the line segment tofloodedand the
other totrafficable. With the current implementation of the sys-
tem the approach achieves a correct assignment for 78% of the
road objects. Only a very small value of false assignments is
obtained. This result is deteriorated due to the 5% of ”Possibly
wrong assignments”. Less than 1/5 of all road segments (17%)

106

       CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



should be controlled manually in order to reach a correctness of
95%.

Possible assignment Result

Correct assignment 76.99%

Manual control necessary 17.87%

Possibly correct assignment 4.96%

Wrong assignment 0.18%

Table 1: Results Scenario: Elbe

Theresults are obtained with the threshold parameterst1 = 0.5
andt2 = 0.001. The variations of the parameters are depicted
in Figure 7. The parameters are responsible for the amount of
road segments which are assigned to the statepossibly floodedon
condition that they are classified to the classes water or road. The
decrease of ”Wrong assignment” comes along with the decrease
of ”Correct assignments” and an increase of manual control.
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Figure 7: Results dependent on parametert1 andt2 (red= Wrong
assignment, orange = Possibly correct assignment, yellow = Man-
ual control necessary, green = Correct assignment)
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Figure 8: Combination of probabilities and impact of the param-
etert1

In Figure 8 the combination of the probabilitiesµf (a) andpωw
(~g)

is shown. The grayscale bar indicates the combined probability
µf (~g, a). Every star defines a road segment assigned to the class
water by multispectral classification, the color shows the state as-
signed in the reference. Many road segments which are assigned
to the statetrafficable in the reference are wrongly classified by
the system to the class water. The reason is the high standard
deviation of the probability densitiy function for the class road

and, therefore, the overlapping of the class road and water. Road
segments in urban areas occluded by shadows are responsible
for this effect. The thresholdt1 is depicted in blue which dev-
ide the assignment of the roads to the statefloodedandpossible
flooded(Figure 8). Shifting this parameter leads to the results il-
lustrated on the right plot in Figure 7. Furthermore, the improve-
ment of the combined probability is shown in Figure 8. If only
one probability is available, the thresholdt1 would be depicted
as a straight horizontal or vertical line. The total required time
to generate the manual reference is about three hours. Compared
to the time needed for the automatic classification (less than one
minute) points out the efficiency of the approach.

The results of the second test scenario are depicted in Figure 9.
A detail of the original TerraSAR-X scene and the assessed road
segments is shown in Figure 10.

Figure 9: Automatic assessment of roads using the classification
system:flooded roads (red), trafficable roads (green) and possibly
flooded roads (yellow)

Figure 10: Detail of original and assessed TerraSAR-X scene

In the second test scenario the real ground truth is available. Hence,
the assignmentpossibly floodedis not existing in the reference
data. The comparison with the automatic classification system
leads to the result shown in Table 2. After controlling 5% man-
ually, altogether over 86% are correctly assigned. The value
of 14% of wrong assignment is caused by mainly two reasons:
Firstly, the resolution of the StripMap mode hardly enables to
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detect flooded roads in urban areas. Secondly, the geometric ac-
curacy of the used OpenStreeMap road objects are in many cases
not accurate enough for a correct assignment.

Possible assignment Result

Correct assignment 81.22%

Manual control necessary 4.60%

Wrong assignment 14.18%

Table 2: Results Scenario: Gloucesterhire

CONCLUSIONS

Thisarticle presents a classification system to assess GIS-objects
concerning their functionality. The system is evaluated by means
of two test scenarios with the goal to derive the trafficability of
roads during a flooding. Both test scenarios show the good per-
formance and especially the efficiency of this approach. In fu-
ture work, the whole system will be evaluated using real ground
truth to identify the reliability in disaster scenarios. Moreover,
the additional benefit combining different image data types such
as optical and radar will be part of further study. Currently, the
combination of the probabilities is accomplished with a simple
multiplication. It has to be investigated, if the combination of
different probabilities could be realized better using a Dampster-
Shafer framework. In addition, future work comprises the devel-
opment of multi-temporal models to better exploit different image
acquisition times including different data types. A further point
is the preprocessing of the used GIS-objects to impove the spatial
accuracy of the used infrastructure objects.
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ABSTRACT: 
 
Traditional navigation visualization utilizes two-dimensional digital maps for road guidance, and with the advances in visualization 
technique, algorithms, and computer hardware, it offer an opportunity of applications for mobile users in 3D virtual environment. 
The main challenge comes from how to efficiently provide up-to-data location-specific data and navigation services. For the real 3D 
world usually contains a lot of details and represents a huge amount of datasets, so it is a difficult to visualize the complex virtual 3D 
scenes and navigate in them on mobile devices. To solve the problem, this paper proposed a novel approach that is based on 
geographic web services and the servers dynamically generate the 3D scenes in terms of the navigation commands and then send the 
resulting as video-encoded image stream to the mobile client. In order to enhance the efficiency of 3D scenes rendering, those virtual 
3D models’ datasets were prepared and organized in an offline process. The approach allows us to provide interactivity for complex 
virtual 3D scenes on resource and bandwidth limited mobile devices. 
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1. INTRODUCTION 

Traditional navigation and trip planning is two-dimensional 
map display mode, and user can only accept limited information 
organization, poor presentation, and lack of interaction. On the 
contrary, applying 3D techniques for realistic visualizations into 
navigation fields provides new or better solutions that are 
hardly solved by 2D means, the advantages over 2D case are as 
follows: 1) easy navigation of the information space allowing 
better user interaction with the virtual objects and user can 
understand the displayed data through the existence of visual 
metaphors better. In contrast, 2D map reading is a skill which 
requires specific training; 2) the capability to display more data 
at one time, because each location on a 2D map is shown in the 
same scale, and users need to change scales in order to switch 
from viewing local details to overviews. The perspective view, 
on the other hand, has the inherent capability of combining 
different scales into one scene by dedicating a larger amount of 
the screen to the immediate surrounding while at the same time 
showing the entire route in an overview. 
 
Mobile devices, like personal digital assistants (PDAs), mobile 
phones, Palm Pilots, or Pocket PCs, have made undreamed 
progress in computing power, function of displaying and input 
options a few years ago. Combined with a Global Positioning 
System (GPS) receiver, the mobile devices offers an 
opportunity to interact with a map display showing the current 
location and orientation. 
 

Therefore, focused on how to represent 3D environment which 
support navigation on mobile devices, this paper presents a 
client-server solution for accessing virtual 3D scenes for 
navigation. The approach is based on 3D modelling techniques 
in which a full 3D model is generated on sever and sends the 
resulting as video-encoded image stream to the mobile client. 
The solution can be decomposed in three steps. The first one is 
pre-processing. The main purpose is preparing data offline. The 
second one is 3D scenes rendering. The user controls the client 
by navigation command sketches drawn directly on the view-
plane and the sketches are sent to the server, then the server 
interprets these sketches in terms of navigation commands, and 
generates the 3D panorama scenes. The last one is sends the 
results as image sequences to the mobile client. 
 

2. RELATED WORKS 

Mobile applications of virtual 3D scenes represent a major and 
complex research challenge and bottlenecks due to limited 
bandwidth and graphic capabilities, restricted interaction 
capabilities, data standardizations and distribution techniques, 
and digital rights issues. The main challenge here is how to 
render the 3D scenes and models as to usable navigation task 
within the 3D environment because there lack of an efficient 3D 
engine and suitable 3D model that would allow such 
development and field experiments. And the other challenge for 
the navigation domain comes from how to maintain real-time 
update rates in loading and unloading large, complex datasets. 
In fact, 3D space data obtain from the natural environment is 
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usually very huge and mobile platforms have limited 
computation resource (CPU power, memory, storage, and 
wireless network speed). There are several techniques have 
been proposed to visualize, navigate, interact, and query 
database systems in virtual environment. 
 

3D Rendering techniques 2.1 

2.2 

Early studies on 3D maps often attempted to use mobile devices 
with direct model view software. In 3D computer graphics, 
numerous rendering techniques are available to cope with 
complex virtual environment, including discrete and continuous 
multi-resolution geometry and texture representations, view-
frustum culling, occlusion culling, imposter techniques, and 
scene-graph optimizations (Akine-Möller and Haines 2002). 
Visualizations of virtual 3D city models and large terrain 
require an efficient management of large-scale texture data, 
such as images of building facades, aerial photography pictures 
of the terrain, and level-of-details (LOD) management for 
hierarchy of mesh refinement operations for large 
heterogeneous 3D object collections. Although these rendering 
techniques enable real-time rendering of complex 3D scene, 
they still cannot be rendered on mobile devices due to limited 
computational resources and power. 
 
In order to efficient mobile 3D rendering, numerous techniques 
have been approached. Royan et al (2003) describe client-server 
architecture for mobile 3D virtual city visualizations based on a 
progressive and hierarchical representation for 3D geo-virtual 
environments. In his approach, the server firstly pre-computes 
multi-resolution representations of terrain models and building 
models, and then sends these data about visible areas to the 
mobile clients progressively. However, this method need clients 
implement rendering task dynamically and it is difficult to 
mobile devices due to the broad variety of hardware and 
software solutions for mobile 3D graphics (e.g. OpenGLES, 
Mobile 3D Graphics API for J2ME) (J.Döllner, B.Hagedorn 
and S.Schmidt 2006). 
 
Another principle solution consists in server-side 3D rendering 
and the progressive, compressed transmission of image 
sequences. Cheng et al. (2004) investigate a client-server 
approach for visualizing complex 3D models on thin clients 
applying real-time MPEG-4 streaming to compress, transmit, 
and visualize rendered image sequences. They identify the 
MPEG-4 encoding speed as bottleneck of client-server 3D 
rendering, and devise a fast motion estimation process for the 
MPEG-4 encoding. 
 

Data Model 

The main purpose of navigation application is to interpret the 
process such as “whereby people determine where they are, 
where everything else is, and how to get to particular objection 
or places” (Jul and Furnas 1997). The task can be distinguished 
into three kinds, naive search, targeted search, and exploration 
(Darken and Sibert 1996). To do this, users need builds up a 
mental model of the virtual environment by forming linear 
maps and combining them to spatial maps (Ingram and Benford 
1995), and corporate task-based constraints on the navigation 
parameters (e.g. viewer position and orientation). 
 
At the present time, a lot of work has been done which mainly 
aim at how to enhance the visualization efficiency and many 
sophisticated data structures have been designed. For example, 

a number of LOD algorithms have been developed to create a 
hierarchy of mesh refinement operations to adapt the surface 
and decimate polygons thus reducing complexity of 
computation without affecting the quality of scenes. (Lindstrom 
et al. 1996) introduce a real-time smooth and continuous LOD 
reduction using a mesh defined by right triangles recursively 
subdivided according a user-specified image quality metric. 
Some hierarchies use Delaunay triangulations (e.g. Cohen-Or 
and Levanoni 1996; Cignoni et al 1997; Rabinovich and 
Gotsman 1997) while others allow arbitrary connectivities (e.g. 
De Floriani et al 1997; Hugues Hoppe 1998; El-Sana and 
Varshney 1999). In (Duchaineau et al. 1997), the authors 
introduced ROMAing method as a very efficient algorithm 
based on triangle diamonds managed with split and merge 
operations performed using priority queues. The algorithm now 
is widely used in games industry, but its implementation is 
tedious according to (Blow 2000). In 2002, (Levenberg) 
propose to reduce the CPU overhead of the previous binary-
triangle-tree-based LOD algorithms by manipulating aggregate 
triangles instead of simple triangles.  
 
But applications of 3D navigation suffer from a lack of data 
standards and flexible distribution techniques. The virtual 3D 
models frequently are implemented as graphic models without 
explicitly modeling semantic and topological relations. 
Therefore, the data can only be used for visualization purpose 
but not as a basis for higher-level functionality such as 
simulations, analysis tasks, or spatial data mining. 
 

3. OFFLINE DATA PREPARATIONS 

Before geo resources can be efficiently accessed at runtime, the 
datasets including digital elevation models (DEM), aerial 
photographs, entity models and their facade images need to be 
prepared and organized in an offline process. The main purpose 
of this process is to define the data structures, compress the 
spatial data, reduce the data redundancy and enhance the 
rendering efficiency. 
 
In recent years, there have been many techniques purposed to 
partition and organize data with multiple resolution into 
hierarchical structure. The most common ones are Quad-tree, 
BSP (Binary Space Partitioning) tree and Octree. In our 
approach, we designed a pyramid mode for multi-resolution 
virtual environment and partition the whole world into different 
levels and block in terms of latitude and longitude. As each 
level of pyramid data has its own specific storage unit (Here 
these units are called as tiles) and access needs, for each level l, 
with grid spacing 2 l

lS S −= × in world space, it is let the 

desired active region be the square of size . Here the 

parameter of  represents the total space of the area. 
ll nSnS ×

S
 
When multi-resolution pyramid is generating, each level of 
pyramid is represented by hierarchical quad-tree data structure 
and one tile corresponds to a certain range of region, where the 
width and height of the tiles are measured in decimal degrees. 
Child nodes are generated from a parent node by equally 
splitting the parent node tile into 4 quadrants. Each child nodes 
tile has half the width and height of the parent node tile. The 
top-level node in this tree structure represents the area of the 
entire tile, its children each represent one fourth of the terrain 
area, their children in turn each cover one sixteenth of the area 
(see figure 1). The root node of the tree is denoted as levels of 0, 

and is centered on the latitude and longitude0φ = 0λ = , so 
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(…) (…) 

Figure2. Structure of the texture quad-tree. 
Each node represents a certain scene part. 

= −

the root level of tile has the width and height spans the whole 
globe world. By this means, the area of any node can be 
specified by its east (E) and west (W) longitude and north (N) 
and south (S) latitude. For the root node, E  W  

and, , . 
0 180= 0 180

0 90N = − 0 90S =
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The texture tiles are organized in quad-tree structure too (see 
figure2.), which each texture is linked to a unique node in the 
tree and each node is thus associated with a coverage area, or a 
tile. Usually, real-time rendering of massively textured 3D 
scenes involves two major problems: Large numbers of texture 
switches are a well-known performance bottleneck and the set 
of simultaneously visible textures is limited by the graphics 
memory. So it need use different resolution texture to real-time 
render the massively textured scenes. The basic principle of 
multi-resolution texture rendering can be described in: In each 
frame, the texture resolution is chosen in the way that the textel-
per-pxiel ratio is always near to 1 so that the amount of 
necessary texture data remains small (Henrik Buchholz, 
J.Döllner, 2005).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure1.Multi-Resolution Pyramid model 
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For generating pyramid, each level of pyramid is a single 
storing unit, e.g. a file, and each node of the tree stores a single 
texture image and each texture image of level n is decomposed 
into list of samples containing the colour of R (red), G 

(green),B (blue), and the sample’s location given as latitude φ  

and longitude λ . Depending on the location, each list contains 
the sample is assigned to a list such that each list contains the 
samples of the covered area of one tile at the given resolution 
level n. In addition, each node stores a distance variable which 
represents the minimum distance between the view position and 
the node’s bounding box to ensure that the node’s texture 
resolution is sufficiently high. The scene geometry is stored in 
the leaf node. Each leaf node contains the triangles of its 
corresponding scene part and the related subset of the original 
texture of the input scene. 
 
In this paper, we introduce mipmap texture into virtual 
environment, just to make it be one part of the pyramid mode 
and choose the appropriate mipmap-level for the corresponding 
area in texture space at runtime. The basic principle of mipmap 
is: the nearer to the viewpoint, the higher resolution texture is 
required, that is when the projected scale of the surface 
increases, interpolation between the original samples of the 
source image is necessary; as the scale is reduced, 
approximation of multiple samples in the source is required. To 
reduce the computation implied by these requirements, a set of 
prefiltered sourced textures may be created and a succession of 
levels which vary the resolution from the original data is 
represented (see figure3.). 
 

 
 
 Figure3. Various resolution textures of Mip map 
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4. 3D SCENES RENDERING 

For a given location, the server gets the surrounding DEM, 
models data and other additional information from web map 
data server. In our approach, only those tiles which lie in 
frustum view region will be loaded, and search those tiles are 
by grid index (see figure 4a). If viewpoint moves over an 
adjacent tile the algorithm will tend to maintain a square of tiles 
centered on this new tile (which will be load in client memory 
new and becomes the current tiles). At the same time, the 
algorithm will remove some far tiles which are not within the 
field-of-view in order to free memory for the fetching of new 
tiles (see figure 4b). As figure 3a indicated, most of the memory 
of mobile device was consumed at the step. Note that the 
algorithm implicitly handles the case where viewpoint jumps to 
a new tile that is not adjacent to the current one. The quad-tree 
representation of tile data enables very fast view frustum 
culling. 

 

 

 

 

 

 

 

 

In order to enhance rendering efficiency, numerous methods for 
mesh simplification have been developed on the last decade. In 
this paper, the simplifying approach is based on the terrain 
height field and terrains are represented in various resolution 
meshes. Firstly, the full terrain height-field is divided into 
regular tiles, and then the appropriate level of detail is 
computed and generated dynamically, allowing for smooth 
changes of resolution across area of the surface (see figure 5), 
those even areas are represented in low resolution meshes and 
the uneven areas are represented in high resolution meshes. 

 

Fig5. Simplified mesh based on terrain height fields 

 
5. CLIENT-SERVER ARCHITECTURE FOR 3D 

NAVIGATION 

There are stand alone 3D applications which can now run on 
mobile devices. However, for the limited capabilities of the 
mobile devices and aiming to provide the users a panorama 
scene that fits with the real surroundings navigation, our 

approach is implemented based on client-server architecture 
(see figure 6).  
 

 
Figure6. Client-server architecture of 3D mobile navigation 

system 

 
The server system provides a web service interface to the 
virtual environment, and it is responsible for handling requests 
sent from the clients. The 3D models’ datasets are hosted on a 
web map data server, and the server interprets and controls 
navigation commands, then sends the requests to a web 3D 
rendering server to generate a virtual panorama by rendering 
the DEM and a web navigation server generates 3D scenes 
using the panorama images and some other nodes 
corresponding to meta information. The rendering component 
encodes the frames into video stream as 3D scene files. The 
clients can communicate with the server by exchanging SOAP 
messages and the 3D scene files are finally sent to a mobile 
client to show. 

Figure4. Tiles management and adaptive loading  
a). A square area centered on the viewpoint.  
b).Square area preservation on viewpoint move 

Remove 
or cached 

Fetched 

Remained 

a. b. 

 
A mobile device as a thin client system need not contain any 
application of navigation software, it only needs capabilities for 
receiving and playing the multimedia, capturing the user 
requests, sending and receiving SOAP message. 
 

6. EXPERMENT AND CONCLUSIONS 

Due to the complexity of the real world scenario and the vast 
computational power required to achieve a usable performance, 
navigation in 3D environment is still a tough task. In our 
experiment, we handle complex 3D scene models by culling 
areas outside of the field of view, and by using multi-resolution 
models to reduce the data. 
 
6.1 Experiment and results 

This paper proposed an efficient framework for resource 
management and texture handing regarding online and offline 
procession. The Pc server’s primary configurations are shown 
in table 1, and the client platform we selected was a WindowCE 
device as for its multimedia capability and easy of 
programming with Embedded C++.   
 

Table 1.  Configurations of Pc Server 
 
In the experiment to test the efficiency of network transmission, 
we found the major bottleneck is the massive 3D models’ 

CPU Pentium(R) 5, 2.66GHz 
GPU ATI MOBILTY RANEON, 7500 

Memory 1.00GB 
Storage 250GB 
Operating System WinXp, Professional, SP2 
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datasets transfers, especially with slow home or mobile modems. 
Level of details improves the rendering speed but does not 
affect the download time, and on the other hand, the raw 3D 
scene model data imply severe drawback for data security and 
copyright issues. So we transmit only video sequences but no 
raw data to the mobile clients. After the 3D scenes data 
transferred to the mobile client, the frame rate was sufficient for 
conducting the navigation test on mobile client. 
 
In the experiment which measured the difference between 
simplify scene and primal scene, we recorded the amount of 
primary triangles transmit to client memory is about 70,000 (see 
figure 7a), and after being simplified, the amount of triangles 
reduced to 16064, almost 77.1 percent triangles are removed or 
cached (seeing figure 7b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the experiment which test the efficiency of 3D scenes 
generating and rendering, the test area we selected spans about 
200Km×200Km, and it was covered by 30.0m resolution ETM 
color photography and some attention areas were covered by 
1.0m resolution color aerial photography (about 3.5 GB), as 
well as 120 MB of DEMs which the highest resolution is 16m 
spacing and the lowest resolution is 256m spacing. On Pc server, 
we recorded the rendering efficiency about 80-120 fps with 
50%-60% CPU utilization and a delay inserted between the 
frames to maintain constant frame rates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the city model experiment, over five hundred building 
models were rendered, and each building contains hundreds of 

triangles and the facade texture of one building is about several 
million bytes. The average frame rate on servers was about 30-
50 fps for the original texture, and the textures were DDS 
compressed and using mipmap textures, the average frame 
speed up to 70-100fps during real-time rendering. 
 

 

a b 

Figue7. Comparison between primary scenes and 
simplified scenes. a) Primary terrain scenes. b) 
Simplified terrain scenes 

a 

 
b. 
 

Figue9. Panorama of the city models. a) City 
models on Pc servers. b) Sketch the city 
models on mobile client

 
 
 
 
6.2 

6.3 

Conclusions 

Mobile devices currently have the capability to request and 
display 3D panorama scene. This paper proposed an approach 
to generate 3D environment visualization system for personal 
navigational purposes that handles large heterogeneous datasets 
at multi-resolutions. The attached GPS provides the location 
information, and network servers provide the data and 
visualization processing. In the stage of offline data 
preparations, the full area is divided into regular tiles and a 
pyramid mode for multi-resolution virtual environment is 
generated. Having the virtual environment being divided into 
zones helps the users to narrow down their search towards or 
within the intended zone or category only, and it only need 
transmit compressed imagery that is actually requested by the 
users. By the client/server mode, the presented approach allows 
mobile applications to provide users interactive access to 
complex 3D scene models including high-resolution 3D terrain 
geometry, 3D building geometry, and textures. In particular, the 
server can be optimized for processing large-scale 3D scene 
models using high-end computer graphic hardware, whereas on 
mobile clients, there only multimedia capabilities are required. 

b. 

Figure8. Panorama view of large terrain view with 
30.0m resolution ETM color image (a) and city view 
with 1.0m resolution color aerial image (b) on 
mobile client 

a. 

 
Future work 

The major problem with detailed 3D scene models is the big 
size, which affects both the rendering speed and the download 
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time. Especially in city, the models of cities and their details 
can be nearly infinite. In future we need to explore other image 
coding algorithms and graphics optimization techniques such as 
occlusion culling. 
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ABSTRACT:

Urban object models are valuable assets that allow reuse in different applications. Besides the need for exchange formats there is
also the need for comprehensive, efficiently processable data structures for such models. This paper presents a graph-based schema for
integrated models of urban data, that is an adaption of the comprehensive CityGML approach. It defines an explicit graph representation
and thus is well-suited to efficient processing algorithms. The paper demonstrates how appropriate light-weight components realizing
different kinds of services on models can be used for consistently processing semantics, geometry, topology and/or appearance of
graph-based models compliant to that schema. Several examples are given.

1 INTRODUCTION

Urban models are valuable assets that should be constructed once
while being used multiple times in different applications. There-
fore the exchange of 3d city models between different tools is
indispensable. Various XML formats are being used to achieve
interoperability between tools. These formats (e.g. CityGML
(Groeger et al., 2008)) are able to carry topological, geometric,
semantic, and appearance information, but in different forms and
to varying extent.

Applications, like tools for the automatic extraction of topo-
graphic objects, build on these urban object models and improve,
transform, and analyze them in different ways. XML-technology
(e.g. XSLT and XQuery) is widely used to support these activ-
ities, but this technology is not well-suited for the implementa-
tion of the various algorithms on urban objects which come from
the areas of algorithmic geometry, computer graphics, and im-
age recognition, since the necessities of efficient content-based
traversal of all relevant information is only hard to realize in the
essentially tree-like structures supplied by XML.

Therefore, a comprehensive, efficiently processable data struc-
ture for urban objects is essential. Geographic information sys-
tems share this necessity with route guidance systems, where a
graph-like internal representation of data is used for the compu-
tation of routing information.

In this paper, we present an approach for the efficient storage,
analysis, and manipulation of city models using graphs and for
the development of application specific components collectively
working on an integrated, efficient graph representation of city
models. Import/export from/to CityGML is tackled, as well. 1

After a short overview of the state of the art in section 1.1, sec-
tion 2 shortly introduces the employed graph and component
concepts. Section 3 describes the graph-based integrated model
schema with all its aspects, and section 4 shows how quite differ-
ent kinds of functionalities can be implemented on such a model
by independent components. Section 5 concludes the paper.

1The project is funded by the DFG (EB 119/3-1).

1.1 State of the art

There are several XML-based modeling languages for urban ob-
jects. The City Geography Markup Language (CityGML)2 is a
common information model for the representation of 3d urban
objects and an official standard of the Open Geospatial Consor-
tium (OGC) since August 2008 (Groeger et al., 2008). Besides
representing geometry, CityGML can also be used to model topo-
logical and semantic properties of 3d city models and to attach
appearance information like textures.

Models described using CityGML can be rendered by Ifc-
Explorer for CityGML3 from the Institute for Applied Com-
puter Science, Forschungszentrum Karlsruhe or the LandXplorer
CityGML Viewer4 from Autodesk and by Aristoteles5 from the In-
stitute for Cartography and Geoinformation, University of Bonn.

Besides CityGML there are other languages for the representation
of 3d urban objects. One common approach is the OGC standard
Keyhole Markup Language (KML)6. CityGML uses a subset of
the OGC standard Geography Markup Language (GML) (Cox
et al., 2001) for geometry representation, KML derived his ge-
ometric elements from GML. KML is often combined with the
COLLADA7 exchange format for 3d assets. Another 3d model-
ing language is Extensible 3D (X3D)8, the successor of the Virtual
Reality Modeling Language (VRML) standard.

2 BASIC TECHNOLOGIES

2.1 TGraph technology

For the efficient manipulation of urban object models with all
their aspects a versatile and powerful basic technology is needed.
In the context of this work TGraph technology is used.

2http://www.citygml.org, http://www.citygmlwiki.org
3http://www.iai.fzk.de/www-extern/index.php?id=1570
4http://www.3dgeo.de/citygml.aspx
5http://www.ikg.uni-bonn.de/aristoteles
6http://www.opengeospatial.org/standards/kml
7http://www.khronos.org/collada
8http://www.web3d.org/x3d
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semantics::
SemanticObject
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gen::
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- z: Double
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Figure 1: The integrated model schema as a grUML diagram. Semantic entities are colored white with namespace ”sem”, appearance
entities are colored gray with namespace ”app” and geometry/topology entities are colored dark gray with namespace ”geo/top”.

TGraphs are directed graphs whose vertices and edges are typed,
ordered and attributed. Their structure, types and attributes help
to model the different aspects (topology, geometry, semantics,
and appearance annotation) of urban objects in a common in-
tegrated data structure. TGraphs are supported by a powerful
API (JGraLab9) in combination with a graph query language
(GReQL) and a corresponding UML-based metamodeling ap-
proach (grUML). grUML is a subset of UML class diagrams
which allows the specification of classes of TGraphs on the
schema level (Ebert et al., 2008). Figure 1 contains an example.

2.2 Lightweight component model

If all relevant data of the urban object model are stored in a
TGraph, all processing of the model can be encapsulated in ap-
propriate components working on this particular TGraph.

The work described here is based on a light-weight Java compo-
nent model which is employed for the different processing activ-
ities on the model (see section 4). The component concept is ba-
sically an extension of the well-known strategy pattern (Gamma
et al., 1995). Every component has a definition in the form of a
Java interface which describes its service and at least one imple-
mentation in the form of a Java class.

9http://jgralab.uni-koblenz.de

Components are serializable and get their data to process as argu-
ments of their execute()-methods. Further data that influence
their work are handled as parameters which have a default value
and are manipulated via getters and setters. For example some
processing steps can be configured by parameters (like thresh-
olds).

3 THE INTEGRATED MODEL SCHEMA

The internal representation of urban object models by TGraphs
has to be specified by a metamodel, called schema in the follow-
ing. This schema defines the set of compliant TGraphs. Classes
define the possible vertex types, and associations define the edge
types. The attributes of vertices and edges can be added accord-
ing to the well-known UML notation, as well. Edge direction is
visualized by arrow heads, though it should be noted, that TGraph
edges are traversable in both directions by algorithms.

Figure 1 shows the main parts of an integrated schema which de-
fines a set of TGraphs for urban objects. (To improve readability
all enumeration types and some semantic subclasses as well as
attributes are elided.) This schema is inspired by and partially
derived from the CityGML 1.0 schema. Especially it follows the
idea to separate the four relevant aspects of an urban object model
(namely topology, geometry, semantics, and appearance).
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Figure 2: The main components as feature diagram. Component groups are colored white, concrete components are colored gray.

The schema contains semantic entities, appearance entities and
geometry/topology entities. The semantic part contains enti-
ties from the subpackages Core (namespace ”core”), CityOb-
jectGroup (namespace ”grp”), Generics (namespace ”gen”) and
Building (namespace ”bldg”). It should be noted that in principle
also other ontologies might be used for the semantic part.

This grUML schema extends the tree-like XML schema of
CityGML to a real graph-based schema, that (meta-)models the
entities and relations of urban objects much more explicitly.

In CityGML models multiple occurences of the same object can
mostly be modeled by defining the object once and referencing
it using XLink10. But this is not possible for every object. As
an example, the GML specification offers the definition of the
control points of a LinearRing (exterior of a Surface) using the
types DirectPosition or PointProperty. The first is used, if
the control points are used only in this geometry element, the
second is used used, if the control points may be referenced from
other geometry elements. CityGML restricts these possibilities
to DirectPosition. This means in CityGML models for every
occurence of the same real world point as control point of the
surfaces of a building there is a new DirectPosition. And even
if XLinks are used, they often can not be processed sequentially
and their interpretation is time-consuming.

Using the integrated model schema of figure 1, every entity in
an urban object model exists only once as a node and all its uses
and occurences are modeled by edges. This explicit, strongly
linked representation reduces redundant information and enables
automatic model processing by a very large class of algorithms.
It is easy to import and export CityGML models using LODs 1-3
to and from an integrated model.

3.1 Geometry/topology schema part

The geometry/topology part of the integrated model schema dif-
fers from the CityGML schema. CityGML uses a subset of GML
to represent geometric entities as a boundary representation (Fo-
ley et al., 1990, Herring, 2001). But the geometry/topology part
of the integrated model schema is not based on this GML subset,
since entities and relations are not represented explicitly enough
and the same geometric objects may appear more than once in the
same model.

10http://www.w3.org/TR/xlink

Here, geometry and topology are modeled as another kind of
boundary representation, namely as an extended vertex-edge-
face-graph (v-e-f-graph) similar to the well-known and highly
efficient Doubly Connected Edge List (DCEL) representation
(Muller and Preparata, 1978). A geometric object consists of 3d
points, 3d faces and 3d volumes, modeled as typed nodes con-
nected via edges. The geometric information is encoded in the
attributes of the 3d points, and the topological information is rep-
resented by the edges between the geometric entities.

3.2 Semantics schema part

The semantics part of the integrated model schema is based on the
CityGML modules Core, CityObjectGroup, Generics and Build-
ing. Thus, terms like ”building”, ”wall surface” and so forth can
be used without further explanation in the following. Each of the
mentioned modules is packed in its own subpackage.

3.3 Appearance schema part

The appearance part of the integrated model schema is oriented
at the CityGML appearance module. But the different kinds of
surface data (material, different kinds of textures) are directly re-
lated to the 3d faces they shall be applied to. The model allows
static and dynamic textures, but dynamic textures are preferred.
A dynamic texture consists of an image and a transformation ma-
trix containing values to compute 2d texture coordinates for ex-
isting 3d points concerning the given image. By using dynamic
textures, texture coordinates can be updated during model export
if their corresponding 3d points have changed during model im-
provement.

4 INTEGRATED MODEL PROCESSING

The integrated model schema defines the class of TGraphs that
represent urban object models with all their aspects. There are a
lot of possible processing activities for integrated models, which
are introduced in the following. Figure 2 gives an overview over
such processing activities and their dependencies in the form of a
feature diagram (Czarnecki and Eisenecker, 2000).

Here, the components constitute a product line (Pohl et al., 2005)
where features are implemented by Java components (subsec-
tion 2.2). (The components are referenced by identifiers written
in typewriter style.)
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This chapter presents some of these processing components in
more detail in order to prove on an example basis that all kinds of
processing is possible on integrated models based on TGraphs.

The (intermediate) results of the different processing activities are
exported using the CityGMLModelWriter component (subsec-
tion 4.5) and the XML text is rendered using the IfcExplorer for
CityGML (section 1.1). IfcExplorer encodes different (semantic)
parts of CityGML models using various colors. Wall surfaces are
rendered gray, ground surfaces dark gray, roof surfaces red, doors
dark blue, windows light blue and nearly transparent and all other
faces cyan. (Unfortunately this distinction is hardly visible in the
black-and-white versions of this article.)

4.1 Example

The functionality of the components is demonstrated on the ba-
sis of a model of one simple example building, which may be
created using the ExampleBuildingModelGenerator (subsec-
tion 4.2). The full model consists of one ground surface, four
wall surfaces, four roof surfaces, one door and five windows, its
geometry contains fifteen 3d faces and thirty four 3d points. The
user can choose, which model parts should be generated and how
they should be connected. Figure 3 shows the full model. Since
semantics, geometry and topology of this example model are well
known, it is used as example model for most of the components
mentioned in the following.

Figure 3: Full example model.

4.2 Model creation.

First of all, an integrated model has to be created. There are
two kinds of automatic model creation, namely model import and
model generation.

Model import. During model import an existing model is
read from a file. TgModelReader reads an existing inte-
grated model from a .tg-file (the JGraLab file format) and
CityGMLModelReader reads an existing CityGML model from
an .xml-file and transforms it into an integrated model. This
import respects the CityGML[Appearance,Building,CityObject-
Group,Generics]11 profile. Semantic objects from other
CityGML modules are ignored at present.

Model generation. During model generation an inte-
grated model is created from scratch by a list of cre-
ation steps which are hard-coded in Java. The component
ExampleBuildingModelGenerator constructs the complete

11The Core module is not mentioned in CityGML profile names, be-
cause it belongs to every profile

example model from figure 3 that contains all four integrated
model parts. InitialBuildingModelGenerator constructs
incomplete models which function as bases for incremental
model supplementation activities, which are not explained in
further detail here.

4.3 Model improvement

The advantage of a graph-based representation of 3d models be-
comes clear if elaborate algorithmic activities are applied to them.
Such activities are especially needed if the imported model is still
unprecise and incomplete, for instance because it consists of raw
data delivered by some object extraction tool (Falkowski et al.,
2009).

Then, the raw models might have to be improved algorithmi-
cally. This includes topological, geometric and semantic model
improvement. Geometric model improvement may even be spe-
cialized into geometry correction and geometry/topology supple-
ment.

Topological model improvement. During topological
model improvement different kinds of topological infor-
mation are added to an integrated model. The component
TopologySupplementor complements an integrated model
by adding implicit topological dependencies as explicit arcs in
the graph. It may connect all neighboring faces of a 3d face by
isAdjacentTo-edges and all neighboring 3d points accordingly
to a 3d point, if they are not related yet. Furthermore it may
add all 3d faces that lie in another 3d face as inner faces. The
component uses the geometric/topologic model part, but changes
only topology.

Topological model improvement should always be the first im-
provement step, since most of the later processing steps are
based on computational geometry algorithms that assume com-
plete topological information.

Geometry correction. In raw models, the computed 3d coor-
dinates are often only known approximately. This may lead to
(slightly) distorted models. See figure 4 as an example.

Figure 4: Geometry correction: Example model with ”wrong” 3d
point and therefore with 4 non-planar faces.

During geometry correction the geometry information of an in-
tegrated model (i.e. the x-, y- and z-coordinates of 3d points) is
corrected. The FaceToPlaneFitter tests the planarity of all
3d faces and makes them planar, if they are not. The FaceTo-

RectangleFitter tests the squareness of all 3d faces and makes
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them rectangular, if they are nearly squared. Both components
use appropriate approximation algorithms and both use the geo-
metric/topologic model part, but change only the geometry. This
correction transfers the model of figure 4 to the one in figure 3.

Geometry/topology supplement. Models extracted from 2d
images are usually incomplete, since hidden information is miss-
ing. For urban data (sometimes) plausible assumptions may be
made about the 3d-structure of the objects (e.g. they may be as-
sumed to be cuboids).

Figure 5: Geometry/topology supplement: Incomplete Example
model (left), supplemented example model (right).

During geometry/topology supplement different kinds of geomet-
ric and topological information are added to an integrated model.
The CuboidCompleter tests if there are incomplete cuboids in
the integrated model and completes them by adding mirrored in-
verted copies of existing 3d faces (figure 5). The component uses
the geometric/topologic model part, and enhances geometry as
well as topology.

Semantic model improvement. Given a corrected and supple-
mented model, also semantic information might be inferable and
should be added to the model.

Figure 6: SemanticsSupplement: Model without relations be-
tween building and boundary surfaces as well as boundary sur-
faces and openings.

During semantic model improvement different kinds of semantic
information are added to an integrated model. The component
SemanticsSupplementor complements an integrated model by
adding implicit semantic dependencies as explicit relations. It
acts on the assumption, that if an object belongs to an aggre-
gation, its parts also have to belong to this aggregation as well

and vice versa. The component adds openings or building to a
city model, if their related boundary surfaces belong to this city
model. Figure 6 shows a an example of a semantically poor
model which is be transformed into the full model of figure 3
by this component. The component uses the semantics and the
geometric/topological model part, but changes only semantics.

4.4 Model transformation

A general class of processing activities is the modification of an
integrated model by some kind of model transformation. There
are geometry/topology transformations and semantic transforma-
tions. An example for geometry/topology transformation could
be triangulation. An example for latter might be changing the
CityGML like semantics part into one according to a proprietary
ontology.

4.5 Model export

In general the integrated model or at least parts of it have to be
stored persistently after processing. During model export an in-
tegrated model is written to a file.

The component TgModelWriter writes a full integrated model
to a .tg-file. If the exported .tg-model is imported again, no infor-
mation will be lost.

Figure 7: Extraction of the example graph, exported to .dot for-
mat and rendered via dotty, a Graphviz tool.

The component DotModelWriter writes an integrated model to
a .dot-file, the standard file-format of the Graphviz12 graph visu-
alization software (figure 7). The result can be processed further
using Graphviz.

The CityGMLModelWriter writes the integrated
model via a special graph traversal algorithm as a
CityGML[Appearance,Building,CityObjectGroup,Generics]
model into an .xml-file. The user can influence the result by
choosing the LOD and the kinds of textures to be written. The
result can be processed further by other tools. For example,
it may be rendered via any appropriate CityGML Viewer (see
section 1.1). If the exported .xml-model is imported again,
information might be lost, since the integrated model contains
more information than those covered by CityGML.

12http://www.graphviz.org
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4.6 Model analysis

Many more activities might be implemented on the integrated
model, since all kinds of queries may be posed on it. Thus, a
further processing activity is the analysis of the integrated model.
This activity is not mentioned in the feature diagram in figure 2,
since it is carried out as part of nearly every other integrated
model processing activity. All tests concerning existing model
elements and/or their properties or relationships are model anal-
ysis steps. There can also be transversal analyses, regardind co-
herences of a whole model, a part of a model (e.g. one building)
or a special view to a model (e.g. geometry). Using the TGraph
structure traversal and analysis of the integrated model is done
repeatedly during runtime using the graph API and/or GReQL
queries. Transversal analyses are particularly supported by the
graph API. For example it offers iterators for all nodes or edges
of a special type (and it subtypes) in the whole model.

Listing 1: Building analyser results.
B u i l d i n g 1

Id : 2
Name : Example b u i l d i n g
D e s c r i p t i o n : Example b u i l d i n g model f o r t e s t i n g .

Year o f c o n s t r u c t i o n : n o t known
Year o f d e m o l i t i o n : n o t known

Number o f a p p e a r a n c e s : 0
Number o f b u i l d i n g i n s t a l l a t i o n s : 0
Number o f b u i l d i n g p a r t s : 0

Number o f boundary s u r f a c e s : 9
Number o f w a l l s u r f a c e s : 4
Number o f r o o f s u r f a c e s : 4
Number o f ground s u r f a c e s : 1
Number o f o p e n i n g s : 6
Number o f d o o r s : 1
Number o f windows : 5

Number o f 3d f a c e s : 15
Number o f 3d p o i n t s : 34

Lowest 3d p o i n t : P o i n t 1 : ( 0 . 0 , 0 . 0 , 0 . 0 )
H i g h e s t 3d p o i n t : P o i n t 9 : ( 2 . 0 , 1 . 0 , 4 . 0 )
He ig h t : 4
Width : 4
Depth : 5
Volume : 68

To demonstrate the usage of querying with GReQL an additional
component BuildingAnalyser was developed, that writes in-
formation about all buildings of the integrated model into a .txt-
file. The file contains different kinds of information. At first there
is semantic attribute information like name, description and year
of construction/demolition of the building. Moreover there is se-
mantic entity information like the number of wall, ground and
roof surfaces, the number of doors and windows, and so on. Fur-
thermore there are geometric information like the count of points
and faces of the building geometry or the lowest and highest point
of a building. And there is inferred semantic information com-
puted using semantic background knowledge in combination with
geometry information, like the building height, the building vol-
ume, and so forth (listing 1).

5 CONCLUSIONS AND FUTURE WORK

This paper showed how geometric, topological, semantic and ap-
pearance information can be integrated in one integrated graph
model. The class of models was defined by an integrated model
schema. Graph representation gives rise to all kinds of algorith-
mic processing, some examples of which were given, including
model creation, improvement, transformation, analysis and ex-
port. Using a lightweight Java component model some example

components were implemented and illustrated based on a simple
example.

Though the example has toy character, it should suffice to demon-
strate the wide range of manipulation possibilities given by an
internal integrated graph representation for the enhancement of
urban object models. Since TGraph technology is easily applica-
ble to graphs containing millions of elements, the approach scales
to a wide range of applications.

The integrated model was developed in the context of a project
for object-recognition (Falkowski et al., 2009). It forms the basis
for the application of efficient graph-matching algorithms in this
context.

The integrated model schema is still under construction. But it
is easily modifiable and each of the three parts can be replaced
by different variants. Further goals are the enhancement of the
schema for the full CityGML base profile (CityGML[full]) and
the support for other urban object description languages, like KM-
L/COLLADA (section 1.1). Here the tasks are the change and en-
largement of the integrated model schema and the adaption of all
existing processing components. Some of the described activi-
ties could be splitted to more processing steps. A lot of them can
be composed to interesting combined processing activities. And
there could even be interactive processing components.

Further research topics could be the supplement of more com-
plex model parts to an existing integrated model or the integra-
tion of two different integrated models. Another interesting field
is the inference of semantics from geometric, topological and/or
appearance information.
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ABSTRACT: 
 
In Very High Resolution (VHR) Synthesis Aperture Radar (SAR) context, very fine and accurate georeferencing and geoprojection 
processes are required. Both operations are only applicable if accurate local heights are known. 3D information may be derived from 
SAR interferometry (InSAR), But in VHR context, InSAR reveals to be inaccurate mostly due to phase unwrapping problems and to 
phase/height noise. Generated InSAR Digital Surface Models (DSM) can only be considered as a first good approximation of the 
observed surface. Therefore, we proposed to start from the InSAR DSM, to project it on ground range on a given datum, to model the 
observed scene using this projected DSM, then to simulate in slant range the intensity image issued from this structure model. 
Comparison between simulated and observed intensity image can then be used as a criterion to modify and improve the considered 
underlying DSM.  
In this paper, we present the different steps of the proposed approach and results obtained so far, showing that the proposed process 
can be run iteratively to modify the DSM and reach a stable solution.  
 
 

1. INTRODUCTION 

A cooperation programme named ORFEO (Optic and Radar 
Federated Earth Observation) was set up between France and 
Italy to develop an Earth observation dual system, optic and 
radar, with metric resolution. Italy is in charge of the radar 
component (COSMO-Skymed), and France of the optic 
component (PLEIADES). 
 
Beside ORFEO, an accompanying programme was set-up to 
prepare the use and joint exploitation of images that will be 
provided from this satellites constellation.  In the frame of this 
accompanying programme, the Belgian Science Policy 
(BelSPo) is financing the EMSOR project aiming at performing 
man-made object detection for urban map updating using VHR 
SAR and optical data.  
 
While such objective is well addressed in the optical imagery, 
this topic stays highly challenging in SAR imagery due to 
inherent peculiarities of SAR acquisition and imaging mode. 
Main obstacles are geometrical on one side and linked to SAR 
signal content on the other side. Geometrical deformation 
specific to SAR systems, i.e. layover, foreshortening, 
shadowing, make man-made structures appearing very 
differently in shape with respect to their appearance in optical 
imagery (Balz T. 2003). 
 
Specificities of SAR signal, mainly speckle, radar cross section 
dependence with incidence angle and multiple reflection 
processes make identical objects appear sufficiently differently 
to compromise, or make inoperative, classical detection 
techniques applicable in optical imagery.  Man-made structures 
detection in SAR images based on speckle filtering followed by 
image segmentation is not applicable as such. Classification is 
often considered as a first processing step that, combined with 
other information layers, is used in higher level processing for 
fine Digital Surface Model (DSM) extraction and man-made 
structure detection (Tison et al. 2007, Thiele et al. 2007). SAR 
scene simulation was also proposed to help in fine 

georeferencing process (Blaz T. 2006) or to iteratively steer 
building structures detection and identification (Soerger et al. , 
2003). 
 
Similarly, in this paper, we propose an iterative way to improve 
a seed DSM that is obtained through classical Interferometric 
processing of single pass VHR SAR data. We developed a basic 
SAR intensity image simulator adapted to very high resolution. 
This one is then used to improve our seed DSM, comparing the 
simulated image in intensity with the detected one and using 
this comparison to perform blind DSM corrections without any 
a priori knowledge of the underlying urban structure. 
 
The proposed approach is justified by the fact that classical 
interferometric SAR (InSAR) is showing its limits in the VHR 
context. Therefore, on-ground projected InSAR DSM can be 
considered as a first approximation of the 3D observed surface 
and be used as a seed DSM to be improved.  
 
The main aim being man-made structure detection, 
improvement means here reaching a DSM representation 
allowing better detection and localisation of searched structures. 
 
This paper describes first results obtained and choices that have 
been made up to now to assess the validity of the proposed 
iterative process. Our first aim was to perform a proof of 
concept of the proposed approach, i.e. DSM improvement based 
on iterative comparison between a simulated and detected SAR 
intensity image.  
 
 

2. TEST SITE AND SEED DSM 

2.1 Data set description 

To generate our seed DSM, we are using a VHR InSAR pair 
acquired in February 2006 above Toulouse (France) by the 
RAMSES X-band sensor (Dupuis et al. 2000). Resolution cell 
dimensions are 0.55m in azimuth by 0.35m in slant range.  We 
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limited the data to a sub set of approximately 2000x2000 pixels 
at full slant range-azimuth resolution. This subset contains both 
man-made structures and open vegetated areas. 
 
2.2 Seed DSM generation 

Seed DSM is first generated in Slant range projection using 
interferometric processing.  Working at Very High Resolution 
may induce some local problems mainly in the phase 
unwrapping process.  
 
Man-made structures and more generally all features observed 
at VHR induce rapid height variation with respect to the 
resolution cell dimension. Since working at full resolution, 
these rapid height variations combined with phase noise induce 
in turn high spatial frequencies in the interferometric phase, 
making the phase unwrapping process potentially difficult even 
if the ambiguity of altitude is high compared to buildings 
heights. The generated InSAR DSM contains some small holes 
made of local DSM areas unwrapped independently. Figure 1 
shows the amplitude image of the sample data set in slant range 
with the derived DSM. 
 

  
Figure 1: Data set and corresponding seed DSM in slant range 

 
After the phase unwrapping process, the seed DSM is still in 
slant range azimuth geometry. Before being considered as the 
seed DSM to be iteratively improved, it must be geo-referenced 
and projected in a convenient geometry.  
 
A convenient geometry is a projection within which further 
processing for man-made structure detection, localisation and 
identification will be feasible but also a projection geometry 
within which SAR scene simulation will stay easy to model. 
 
Considering first that man-made structures have no preferential 
orientation within an observed scene, there is no peculiar 
advantage of using a specific geographic or cartographic 
projection rather than another. Therefore, with respect to man-
made structure detection, the important point is to work on geo-
projected data to get rid of geometrical aspects linked to the 
slant range geometry. Consequently, working within a given 
geographic or cartographic projection is of no peculiar 
importance. 
 
Considering SAR scene simulation, we need a projection 
geometry allowing to easily model radar wave interaction with 
the observed scene. Interactions taken into account here are 
purely geometrical (ray tracing). At the present time, we do not 
intent to take a local backscattering coefficient into account, 
even if possibilities to integrate it in the model will be 
envisioned at each implementation steps. 
 
Based on these considerations, the ground range projection was 
chosen. This geometry is certainly the simplest to be considered 
for SAR scene simulation, while, with respect to man-made 

structure localization, it is not necessarily the most convenient. 
Therefore, when performing ground range projection, geo-
referencing of each point in terms of longitude and latitude will 
be saved to allow further projection in any geographic or 
cartographic reference system. 
 
2.3 Structure definition 

Once geo-projected, the seed DSM must be used to define a 
structure that in turn will be used to model the backscattered 
SAR signal and simulate the detected SAR scene. Therefore, 
structure definition depends mainly on the way the simulation 
process is envisioned. The basic idea is to associate to each 
point of the DSM, a value that is proportional to the 
backscattered energy, giving then a peculiar weight to each 
point. Next, this map of backscattered energy will simply be 
back-projected in slant range to generate a simulated image.   
 
In a first approach, we simply aimed at considering non-
coherent dihedral reflection as the main backscattering process 
to be taken into account.  
 
2.3.1 Dihedral structures: Once more, for the sake of 
simplicity and in order to allow us to first perform a proof of 
concept, we choose to use directly the DSM as the structure 
itself. Simply, two consecutive heights are used to define a 
dihedral. The DSM is considered sequentially, azimuth lines by 
azimuth lines, and within a line, heights are considered 
sequentially with increasing ground range. If a given height is 
greater than the preceding one, a dihedral structure can be 
defined (fig 2). 
 

 
Figure 2: DSM height interpretation 

 
The part of the incident beam intercepted by a dihedral structure 
will be fully backscattered toward the beam source. Therefore, 
the backscattered energy will be proportional to the square of 
the aperture of the considered dihedral structure; the aperture 
being the hypotenuse of the illuminated part of the dihedral. 
 
Any entering beam in the dihedral follows an optical path of the 
same length. Therefore, all entering beams will be imaged as 
localized at the phase centre of the dihedral. Since we are 
working azimuth lines by azimuth lines, our basis structure is 
defined in 2D and the phase centre is localized at the 
intersection of the local horizontal and the local vertical of the 
considered point.  
 
If we consider two consecutive points of our DSM along a 
ground range line having respectively heights hi-1 and hi, a 
dihedral structure will basically be defined if hi > hi-1; its phase 
centre will be localized at ground range coordinate of hi with 
local height hi-1 and have a weight proportional to its aperture. 
 
2.3.2 Overestimation: Normally, the aperture of a dihedral 
should be computed taking into account shadowing of preceding 
dihedrals, if any, and be computed with respect to the height 
difference or with respect to the base, whatever the one is 
limiting the aperture the first.  
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At the present time, we decided to compute the aperture in the 
simplest way possible to rapidly have a functioning iterative 
process. Improvements of the structure model will be 
considered at a later stage. Therefore, apertures are computed 
directly from the local height difference and from the local 
incidence angle, not taking into account the base of the dihedral 
(fig. 3). This can lead to an overestimation of the dihedral 
aperture. 

 

 
Figure 3: Basic model of dihedral back-scattering 

 
2.3.3 Dihedral aperture / surface scattering limit: If 
dihedral backscattering process may be considered as 
predominant in the presence of man-made structures in terms of 
backscattered energy, surface scattering must also be taken into 
account for open areas that are also well present at VHR. 
 
Considering only dihedral backscattering process tends to 
segment the structure; each time a local height is lower than the 
preceding one, the aperture, and so the backscattered energy, 
will be considered as null. 
 
Therefore, we determined a simple height variation limit above 
which, we consider that dihedral backscattering process occurs 
and below which, surface backscattering is taking place.  The 
chosen limit is simply the one inducing layover. If the local 
height difference induces layover, we consider that we have to 
deal with a dihedral structure, if not, we consider we have to 
deal with an elementary surface (fig. 4 & 5). 
 

 
Figure 4: Dihedral structure – surface scattering limit 

 
Above the layover limit, the weight of a point will be calculated 
as its dihedral aperture. Below this limit, surface scattering will 
be considered.  
 
 

 
Figure 5: Surface scattering component 

 

In case of surface scattering, not taking into account a specific 
local backscattering coefficient, the backscattered energy is 
taken as proportional to the beam section intercepted by the 
considered pixel. In place of dihedral aperture, we can thus 
speak in terms of pixel aperture (fig. 5). 
 
As depicted in figure 5, the intercepted beam section will 
decrease with the height variation between two pixels up to zero 
when the shadowing limit is reached.  
 
In terms of backscattered energy, surface backscattering process 
has a much lower weight than dihedral reflection. Therefore, in 
practice, a fix coefficient will be applied between both aperture 
types. At this level, a local backscattering coefficient and/or an 
emission diagram at pixel level depending on the local slope 
and on the local incidence should be considered as 
supplementary weighting factors. 
 
It follows that for a given DSM we define a structure that allows 
taking into account two backscattering process: dihedral and 
surface, each with a different weight. Once again, for the sake 
of simplicity, the current model attributes the computed pixel 
aperture to the point located at the current position i with height 
hi as if the point was a phase centre, even if considering surface 
scattering. 
 
Consequently, our model defines only point scatterers located 
on a ground range – azimuth mesh for which height are issued 
from the projected DSM that must be updated and improved 
iteratively. At each of these point scatterer position, we will 
consider we have a point scatterer response whose relative 
intensity will be determined by the computed aperture. 
 
 

3. BACK AND FORTH REFERENCING PROCESS 

The back and forth referencing and projection processes we  
have implemented were specifically developed for space-borne 
sensors. Therefore, no flight motion compensation is considered 
here. Referencing is thus deduced considering an analytical 
trajectory of the sensor on its orbit, a fix Doppler cone for the 
whole scene and a reference geoid (WGS84). 
 
3.1 Ground range referencing 

Existing geo-referencing processes allows finding geocentric 
Cartesian coordinates of a given point in slant range coordinate 
of know height above the geoid. This geocentric coordinate can 
then be translated in geodetic coordinate and converted in 
longitude latitude on the considered datum. Therefore, there is 
an analytical link between the slant range coordinates of a point 
of known altitude and its coordinate in a geocentric Cartesian 
system or in a given cartographic system.  
 
The ground range coordinate of a point given in slant range is 
defined as the length of a curve segment, which is the 
intersection between the chosen geoid and the Doppler cone, the 
length being calculated through integration from the minimum 
slant range point to the considered point. This integration makes 
the reverse calculation complicate. Therefore, in the process of 
calculating the ground range coordinate of a point, this latter 
one is first geo-referenced on the considered geoid, in longitude 
- latitude coordinate. This allows building a map linking ground 
range coordinates with geographical coordinates. This map is 
then fitted by a second order polynomial for both the longitude 
and the latitude.   
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3.2 Slant range referencing 

To complete the back and forth projection process, we also need 
a computational way to reference a point, given in ground range 
coordinate, back to slant range coordinate. We simply use the 
second order polynomial linking a ground range position to its 
longitude – latitude coordinates to find back its geographical 
position. These geographical coordinates are then converted in 
Cartesian coordinates in the Earth center coordinate system and 
the range is derived computing the distance between the 
position of the sensor on its orbit and the Cartesian coordinate 
of the considered point. 
 
Special attention was drawn to this back and forth referencing 
process to ensure reliability and accuracy in accordance with 
VHR context. In practice, mathematically speaking, the 
referencing process can easily reach centimeter precision. 
 
 

4. SAR SCENE SIMULATION 

 
4.1 From aperture to simulated intensity 

As explained previously, from a DSM projected in ground 
range, we build a structure allowing to define either dihedral or 
surface backscattering. To each point on the ground range 
sampling grid, we associate what we have called an aperture, 
which is an evaluation of the incident energy intercepted by the 
dihedral or the considered surface element. Therefore, from a 
DSM, we build what might be called an aperture map. 
 
Each point of the ground range mesh is thus considered as a 
point scatterer to which is associated a point scatterer response 
backscattering an energy proportional to the incident one.  
 
The ground range mesh is then referenced back in slant range 
and the corresponding projection map is built. For each 
destination point in slant range, the projection map contains the 
coordinates of all intervening points in ground range coordinate. 
Intervening points are those that have to be taken into account 
to extrapolate the projected value at the considered slant range – 
azimuth position. After this step, we know the location of the 
centre of each intervening point scatterer response with respect 
to a given slant range –azimuth position.  
 
The pixel at that position receives from a given point scatterer 
response, an energy that is the integral of the impulse response, 
limited to the slant range pixel area. This integral will be the 
weight attributed to the contribution of the considered point 
scatterer response. The simulated energy is obtained summing 
all contributions of all intervening point scatterers responses for 
a given slant range pixel. 
 
In SAR, the impulse response or point scatterer response in 
slant range – azimuth is a sinc-like function generally 
approximated by a sinc function (Bamler 1993). In terms of 
energy, we thus deal with a square sinc function and our 
apertures map in slant range must then be considered as a mesh 
of square sinc functions of different heights. 
 
In practice, computing the integral of bi-dimensional squared 
sinc function on a given interval is highly complex. Therefore, 
we approximate our point scatterer response by a Gaussian 
having the same width at half maximum. The advantage is that 
calculating the integral of a bi-dimensional Gaussian on a given 
interval is straightforward (Fig. 6). One drawback is that strong 

side lobes issued from dihedral backscattering process are not 
modelled. 
 

 
Figure 6: Integration of an approximated point scatterer 

response limited to a target slant range pixel  
 
Figure 7 shows the square root of the simulated image obtained 
in slant range starting from our seed DSM given in ground 
range and following the whole procedure described here-above. 
The real detected SAR image is shown on the right of the figure 
for qualitative comparison. For the sake of clarity and to 
improve contrast, the square roots of the simulated intensities 
are represented. 
 
If, from a macroscopic point of view, similar structures are 
roughly observable, the simulated image does show a level of 
details very far from the one of the detected SAR image. 
Reasons of having apparently so poor results may have three 
distinct origins: the seed DSM quality, the structure model used 
for estimating the local backscattered energy and the used 
parameters. 
 

  
Figure 7: Simulated SAR scene based on seed DSM structure 

 
When projecting the InSAR DSM onto ground range to build 
the seed DSM, available parameters are on-ground resolution 
cell dimension, semi-major and semi-minor axis of the ellipse 
used to find intervening points, weighting method and 
interpolation method. These parameters have great influence on 
the smoothing and the quality of the seed DSM.  
 
In the reverse process, when referencing the backscattering 
structure toward slant range, parameters are the azimuth and 
slant-range resolution to determine the point scatterer response 
width, semi-major and semi-minor axis of the ellipse used to 
find intervening points and the resolution cell dimension of the 
targeted simulated image. 
 
 

5. DSM ITERATIVE MODIFICATIONS 

At this stage, we have the tools required to link slant range and 
ground range geometries allowing a back and forth process. The 
DSM in it self is now in ground range geometry and allows 
generating a simulated SAR intensity image in slant range 
geometry to be compared to the really detected one.  
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For a given point in the simulated image, we have the mapping 
that lists the points of the seed DSM with their respective 
weights intervening in the simulation. Conversely, we also have 
the reverse mapping that, for a given point of the seed DSM, 
lists points in the simulated image into which the considered 
DSM point intervene with respective weights. It is this reverse 
mapping that is used in the DSM modification process. 
 
5.1 Normalisation 

To be correct, the simulated image is considered as being an 
intensity image within an unknown proportionality factor. 
Before being usable as a valid scene for comparison with the 
really detected image, the simulated one must be normalized. 
The normalisation factor is simply the ratio of the integral of the 
backscattered energy measured in Digital Numbers (DN) in the 
detected image to the integral of simulated energy. 
 
After normalization, both images represent the same energy 
globally backscattered by the whole scene, which allows a 
comparison on a point-by-point basis. 
 
5.2 Improvement criterion 

The chosen comparison criterion is simply the local energy 
ratio. In other words, if the detected energy is higher than the 
simulated one, the underlying aperture used for the simulation 
must be increased proportionally. 
 
In the facts, several apertures intervene with different weights in 
the simulation of a point. Therefore, we work in the reverse 
way, using the reverse mapping. For a given point of the DSM, 
the reverse mapping gives us the list of all simulated point into 
which the considered DSM point intervene with corresponding 
weights. Consequently, we perform a weighted average of the 
energy ratios on these simulated and detected points. This 
weighted average gives us the proportionality factor that should 
be applied to the underlying aperture.  
 
Whatever the considered backscattering process, apertures are 
proportional to the local height difference between consecutive 
points in ground range. Therefore, the proportionality factor can 
directly be applied to the local height of the DSM under 
concern. 
 
To summarize, DSM points are corrected sequentially in ground 
range using a weighted average of intensity ratio calculated on 
several points in slant range – azimuth. These slant range points 
are those for which the DSM point under concerns plays a role 
through the aperture it generates. 
 
5.3 Iterative process 

When the corrected DSM is issued, the whole process can be 
reiterated, starting anew from this new DSM. This latter one 
will thus be used to compute a new aperture structure and to 
compute the ground to slant range projection mapping.  
 
The mapping will be used in an additive way to generate a 
simulated SAR intensity image, which, after normalization with 
respect to the detected one, will be used for DSM improvement. 
The simulated scene shown on figure 7 can thus be considered 
as the first iteration of the iterative process described here 
above. 
 
Figure 8 shows the second iteration of the simulated scene so 
obtained. The simulated scene appears still of poor quality, but 
some structures appears more clearly. Corrections with respect 

to the first iteration are quite important, and mainly a first 
segmentation between highly urbanized areas and open areas 
has roughly been made. 
 

 
Figure 8: Simulated SAR scene after 2 iterations 

 
From a computational point of view, in debug mode, one 
iteration takes about 4 minute a run for a seed DSM of about 
2000x2000 points. This computation time being reasonable, up 
to 25 iterations have been performed. Figure 9 shows results 
obtained after 4 and 12 iterations. Figure 10 shows the last 
iteration along with the really detected scene. 
 

  
Figure 9: Simulated SAR scene obtained after 4 (left) and 12 

(right) iterations 
 

  
Figure 10: Simulated SAR scene obtained after 25 iterations 

(left) and really detected one (right) 
 
Clearly, the iterative process converges toward a stable 
simulation. Qualitatively, convergence appears to be more rapid 
between the few firsts iterations, while improvement between 
iteration 12 and 25 becomes less evident. Therefore, the 
proposed process seams to converge monotonically toward a 
solution. 
 
It must be noted that the iterative process converges toward a 
solution that is linked to the underlying aperture model, which 
in turn, is linked to an improved DSM. Our “improved” DSM is 
thus “one possible representation of the observed surface”. 
This possible representation of the observed surface is the one 
that can be obtained with the developed structure model and 
using a peculiar set of parameters. 
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Figure 11 shows in parallel, the seed DSM computed in ground 
range along with the improved one obtained after 25 iterations. 
 

  
Figure 11: Seed and improved DSM 

 
While the simulated SAR scene is clearly improved after 25 
iterations, improvement is less evident observing the obtained 
DSM. 
 
Figure 12 represents a DSM sample line, in ground range, 
before and after improvement. Globally, we observe that the 
modified DSM appears less noisy and more structured. At this 
stage, it is difficult to assert if the reached structure is a correct 
representation of the observed scene and if it can be used in 
man-made structure detection or identification. But, we can 
conclude that the achieved structure, together with the proposed 
model and the used parameter set, allows simulating a SAR 
intensity image close to the really detected one. 
 

 
Figure 11: DSM sample line before (green) and after  (blue) 

improvement 
 
Obtaining a DSM representation closer to the observed one will 
require testing the influence of all parameters as also improving 
our simplistic model. But, the main point is that we performed a 
proof of concept of the proposed principle: “Iterative DSM 
improvement through SAR scene simulation and comparison 
with observed one”. 
 
Since the proposed method is global and does not require any a 
priori knowledge on buildings shapes and orientation, it can be 
envisioned as a first improvement of the DSM to be used in 
more sophisticated and context-based man-made structure 
detection techniques.  
 
Nevertheless, if stable, the reached simulated SAR intensity 
image stays, for the moment, still far from the really detected 
SAR intensity image. We have well concentrated the energy 
where it should, but still not with the degree of details offered 
by the real data. One must thus keep in mind that the obtained 
improved DSM is just one possible representation of the 
observed scene. Other representations are possible provided 
simulation model and set of parameters that are used are 
optimized 
 
 

6. CONCLUSIONS 

We developed the tools required for simulating a SAR intensity 
image in slant range geometry starting from a seed DSM given 
in ground range and issued from InSAR processing.  

 
Our objective was first to perform a proof of concept, showing 
that in its principle, it is possible to perform an iterative 
improvement of a seed DSM by simulation of SAR intensity 
image in slant range – azimuth projection and comparison with 
the corresponding detected one. Therefore, we developed a 
simplistic model allowing to associate a backscattered energy to 
ground range – azimuth resolution cells with respect to local 
heights.  
 
Effort was principally put on the reliability and accuracy of 
back and forth referencing and projection processes. 
 
Clearly, the proof of concept is performed: comparing simulated 
and detected backscattered energy in slant range allows 
correcting iteratively the underlying DSM.  
 
The process converges monotonically toward a DSM structure 
that is thus one possible representation of the observed scene. 
Monotonic convergence shows that the obtained solution is 
stable and is, in itself, the result that had to be obtained to 
validate the proposed iterative process. 
  
Complementary analysis must be performed to assess if the 
derived DSM can efficiently be used for man-made structures 
detection. 
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ABSTRACT:

A recognition-driven variational framework was developed for automatic three dimensional object extraction from remote sensing data.

The essence of the approach is to allow multiple 3D priors to compete towards recovering terrain objects’ position and 3D geometry.

We are not relying, only, on the results of an unconstrained evolving surface but we are forcing our output segments to inherit their 3D

shape from our prior models. Thus, instead of evolving an arbitrary surface we evolve the selected geometric shapes. The developed

algorithm was tested for the task of 3D building extraction and the performed pixel- and voxel-based quantitative evaluation demonstrate

the potentials of the proposed approach.

1 INTRODUCTION

Although, current remote sensing sensors can provide an updated

and detailed source of information related to terrain analysis, the

lack of automated operational procedures regarding their process-

ing impedes their full exploitation. By using standard techniques

based, mainly, on spectral properties, only the lower resolution

earth observation data can be effectively classified. Recent auto-

mated approaches are not, yet, functional and mature enough for

supporting massive processing on multiple scenes of high- and

very high resolution data.

On the other hand, modeling urban and peri-urban environments

with engineering precision, enables people and organizations in-

volved in the planning, design, construction and operations life-

cycle, in making collective decisions in the areas of urban plan-

ning, economic development, emergency planning, and security.

In particular, the emergence of applications like games, naviga-

tion, e-commerce, spatial planning and monitoring of urban de-

velopment has made the creation and manipulation of 3D city

models quite valuable, especially at large scale.

In this perspective, optimizing the automatic information extrac-

tion of terrain features/objects from new generation satellite data

is of major importance. For more than a decade now, research

efforts are based on the use of a single image, stereopairs, multi-

ple images, digital elevation models (DEMs) or a combination of

them. One can find in the literature several model-free or model-

based algorithms towards 2D and 3D object extraction and recon-

struction [ (Hu et al., 2003),(Baltsavias, 2004),(Suveg and Vossel-

man, 2004),(Paparoditis et al., 2006),(Drauschke et al., 2006),(Rot-

tensteiner et al., 2007),(Sohn and Dowman, 2007),(Verma et al.,

2006),(Lafarge et al., 2007),(Karantzalos and Paragios, 2009) and

the references therein]. Despite this intensive research, we are,

still, far from the goal of the initially envisioned fully automatic

and accurate reconstruction systems (Brenner, 2005),(Zhu and

Kanade (Eds.), July, 2008),(Mayer, 2008). Processing remote

sensing data, still, poses several challenges.

In this paper, we extend our recent 2D prior-based formulations

(Karantzalos and Paragios, 2009) aiming at tackling the prob-

lem of automatically and accurately extracting 3D terrain objects

(a) Satellite Image (b) Ground Truth

(c) DEM (d) Extracted 3D Buildings

(e) Reconstructed Scene

Figure 1: 3D Building Extraction through Competing 3D Priors

from optical and height data. Multiple 3D competing priors are

considered transforming reconstruction to a labeling and an esti-

mation problem. In such a context, we fuse images and DEMs

towards recovering a 3D prior model. We are experimenting with

buildings but, similarly, any other terrain object can be modeled.

Our formulation allows data with the higher spatial resolution to

constrain properly the footprint detection in order to achieve the

optimal spatial accuracy (Figure 1). Therefore, we are proposing

a variational functional that encodes a fruitful synergy between

observations and multiple 3D grammar-based models. Our mod-

els refer to a grammar, which consists of typologies of 3D shape

priors (Figure 2). In such a context, firstly one has to select the
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(a) Prior Building Models (Φ̃i,j): i determines the shape of the footprint

and j the roof type

(b) The family Φ̃1,j which has a rectangular footprint (i = 1).

(c) Building’s main height hm and roofs height

hr(x, y)

Figure 2: Hierarchical Grammar-Based 3D Prior Models. The

case of Building Modeling: Building’s footprint is determined

implicitly from the E2D . hm and hr(x, y) are recovered for ev-

ery point (E3D) and thus all the different type of roofs j are mod-

eled.

most appropriate model and then determine the optimal set of

parameters aiming to recover scene’s geometry (Figure 1). The

proposed objective function consists of two segmentation terms

that guide the selection of the most appropriate typology and a

third DEM-driven term which is being conditioned on the typol-

ogy. Such a prior-based recognition process can segment both

rural and urban regions (similarly to (Matei et al., 2008)) but is

able, as well, to overcome detection errors caused by the mislead-

ing low-level information (like shadows or occlusions), which is

a common scenario in remote sensing data.

Our goal was to develop a single generic framework (with no

step-by-step procedures) that is able to efficiently account for

multiple 3D building extraction, no matter if their number or

shape is a priori familiar or not. In addition, since usually for

most sites multiple aerial images are missing, our goal was to

provide a solution even with the minimum available data, like a

single panchromatic image and an elevation map (produced either

with classical photogrammetric multi-view stereo techniques ei-

ther from LIDAR or INSAR sensors), contrary to approaches that

were designed to process multiple aerial images or multispectral

information and cadastral maps (like in (Suveg and Vosselman,

2004),(Rottensteiner et al., 2007),(Sohn and Dowman, 2007)),

data which much ease scene’s classification. Doing multiview

stereo, using simple geometric representations like 3D lines and

planes or merging data from ground sensors was not our interest

here. Moreover, contrary to (Zebedin et al., 2008), the proposed,

here, variational framework does not require as an input dense

height data, dense image matching processes and a priori given

3D line segments or a rough segmentation.

2 MODELING TERRAIN OBJECTS WITH 3D PRIORS

Numerous 3D model-based approaches have been proposed in lit-

erature. Statistical approaches (Paragios et al., 2005), aim to de-

scribe variations between the different prior models by measuring

the distribution of the parameter space. These models are capable

to model building with rather repeating structure and of limited

complexity. In order to overcome this limitation, methods using

generic, parametric, polyhedral and structural models have been

considered (Jaynes et al., 2003),(Kim and Nevatia, 2004),(Su-

veg and Vosselman, 2004),(Dick et al., 2004),(Wilczkowiak et

al., 2005),(Forlani et al., 2006),(Lafarge et al., 2007). The main

strength of these models is their expressional power in terms of

complex architectures. On the other hand, inference between the

models and observations is rather challenging due to the impor-

tant dimension of the search space. Consequently, these models

can only be considered in a small number. More recently, proce-

dural modeling of architectures was introduced and vision-based

reconstruction in (Muller et al., 2007) using mostly facade views.

Such a method recovers 3D using an L-system grammar (Muller

et al., 2006) that is a powerful and elegant tool for content cre-

ation. Despite the promising potentials of such an approach, one

can claim that the inferential step that involves the derivation of

models parameters is still a challenging problem, especially when

the grammar is related with the building detection procedure.

Hierarchical representations are a natural selection to address com-

plexity while at the same time recover representations of accept-

able resolution. Focusing on buildings, our models involve two

components, the type of footprint and the type of roof (Figure 2).

Firstly, we structure our prior models space Φ̃ by ascribing the

same pointer i to all models that belong to the family with the

same footprint. Thus, all buildings that can be modeled with a

rectangular footprint are having the same index value i. Then,

for every family (i.e. every i) the different types of building tops

(roofs) are modeled by the pointer j (Figure 2b) Under this hierar-

chy Φ̃i,j, the priors database can model from simple to very com-

plex building types and can be easily enriched with more complex

structures. Such a formulation is desirously generic but forms a

huge search space. Therefore, appropriate attention is to be paid

when structuring the search step.

Given the set of footprint priors, we assume that the observed

building is a homographic transformation of the footprint. Given,

the variation of the expressiveness of the grammar, and the de-

grees of freedom of the transformation, we can now focus on the

3D aspect of the model. In such a context, only building’s main

height hm and building’s roof height hr(x, y) at every point need

to be recovered. The proposed typology for such a task is shown

in Figure 2. It refers to the rectangular case but all the other

families can respectively be defined. More complex footprints,

with usually more than one roof types, are decomposed to sim-

pler parts which can, therefore, similarly recovered. Given an im-

age I(x, y) at domain (bounded) Ω ∈ R2 and an elevation map

H(x, y) -which can be seen both as an image or as a triangulated

point cloud- let us denote by hm the main building’s height and

by Pm the horizontal building’s plane at that height. We proceed

by modeling all building roofs (flat, shed, gable, etc.) as a combi-

nation of four inclined planes. We denote by P1, P2, P3 and P4

these four roof planes and by ω1, ω2, ω3 and ω4, respectively, the

four angles between the horizontal plane hm and each inclined

plane (Figure 2). Every point in the roof rests strictly on one of

these inclined planes and its distance with the horizontal plane is

the minimum compared with the ones formed by the other three

planes.figure

With such a grammar-based description the five unknown param-

eters to be recovered are: the main height hm (which has a con-

stant value for every building) and the four angles ω. In this way

all -but two- types of buildings tops/roofs can be modeled. For

example, if all angles are different we have a totally dissymmetric

roof (Figure 2b - Φ̃1,5), if two opposite angle are zero we have a
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(a) Detected Buildings (b) Ground Truth

(c) Horizontal True Positives (HTP) (d) Horizontal False Positives (HFP) (e) Horizontal False Negatives (HFN)

Figure 3: Horizontal Qualitative Evaluation: The recognition-driven process efficiently detects, in an unsupervised manner, scene

buildings and recovers their 3D geometry.

gable-type one (Φ̃1,4) and if all are zero we have a flat one (Φ̃1,1).

The platform and the gambrel roof types can not be modeled but

can be easily derived in cases where the fit energy metric is as-

sumed on local minima. The platform one (Φ̃1,2), for instance,

is the case where all angles have been recovered with small val-

ues and a search around their intersection point will estimate the

dimensions of the rectangular-shape box above main roof plane

Pm. With the aforementioned formulations, instead of searching

for the best among ixj (e.g. 5x6 = 30) models, their hierarchical

grammar and the appropriate defined energy terms (detailed in the

following section) are able to cut down effectively the solutions

space.

3 MULTIPLE 3D PRIORS IN COMPETITION

EXTRACTING MULTIPLE OBJECTS

Let us consider an image (I) and the corresponding digital eleva-

tion map (H). In such a context, one has to separate the desired

for extraction objects from the background (natural scene) and,

then, determine their geometry. The first segmentation task is ad-

dressed through the deformation of a initial surface φ : Ω →R+

that aims at separating the natural components of the scene from

the man-made parts. Assuming that one can establish correspon-

dences between the pixels of the image and the ones of the DEM,

the segmentation can be solved in both spaces through the use

of regional statistics. In the visible image we would expect that

buildings are different from the natural components of the scene.

In the DEM, one would expect that man-made structures will ex-

hibit elevation differences from their surroundings. Following

the formulations of (Karantzalos and Paragios, 2009), these two

assumptions can be used to define the following segmentation

function

Eseg(φ) =

∫

|∇φ(x)| dx

+

∫

Ω

Hǫ(φ) robj (I(x)) + [1−Hǫ(φ)] rbg (I(x)) dx

+ ρ

∫

Ω

Hǫ(φ) robj (H(x)) + [1−Hǫ(φ)] rbg (H(x)) dx

(1)

where H is the Heaviside, robj and rbg are object and background

positive monotonically decreasing data-driven functions driven

from the grouping criteria. The simplest possible approach would

involve the Mumford-Shah approach that aims at separating the

means between the two classes. Above equation can be straight-

forwardly extended in order to deal with other optical or radar

data like for example in cases where multi- or hyper-spectral re-

mote sensing data are available.

Furthermore, instead of relying only on the results of an uncon-

strained evolving surface, we are forcing our output segments to

inherit their 2D shape from our prior models. Thus, instead of

evolving an arbitrary surface we evolve selected geometric shapes

and the 2D prior-based segmentation energy term takes the fol-

lowing form:

E2D(φ, Ti,L) =

m−1
∑

i=1

∫

(

Hǫ(φ(x))−Hǫ(φ̃i (Ti(x)))

σi

)2

xi(L(x))dx +

∫

λ
2
xm(L(x))dx + ρ

m
∑

i=1

∫

|∇L(x)|dx

(2)

with the two parameters λ, ρ > 0 and the k-dimensional label-

ing formulation able for the dynamic labeling of up to m = 2k

regions.

In this way, during optimization the number of selected regions

m = 2k depends on the number of the possible building segments

according to φ and thus the k-dimensional labeling function L

obtains incrementally multiple instances. It should be, also, men-

tioned that the initial pose of the priors are not known. Such a

formulation Eseg + E2D allows data with the higher spatial res-

olution to constrain properly the footprint detection in order to

achieve the optimal spatial accuracy. Furthermore, it solves seg-

mentation simultaneously in both spaces (image and DEM) and

addresses fusion in a natural manner.figure

3.1 Grammar-based Object Reconstruction

In order to determine the 3D geometry of the buildings, one has

to estimate the height of the structure with respect to the ground

and the orientation angles of the roof components i.e. five un-

known parameters: the building’s main height hm which is has

a constant value for every building and the four angles ω of the
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(a) 3D View of the Extracted Buildings (b) 3D View of the Ground Truth

(c) Vertical/Hypsometric Difference (absolute values) (d) Vertical Difference among the HTP (absolute values)

(e) Vertical Difference (f) Vertical Difference among the HTP

(g) Vertical False Positives among the HTP (h) Vertical False Negatives among the HTP

Figure 4: Vertical/Hypsometric Difference between the Extracted Buildings and the Ground Truth

roof’s inclined planes (Θi = (hm, ω1, ω2, ω3, ω4)). These four

angles (Figure 2) along with the implicitly derived dimensions of

every building’s footprint (from E2D ) can define the roof’s height

at every point (pixel) hr(x, y):

hr(x, y) =

min [D(P1, Pm);D(P2, Pm);D(P3, Pm);D(P4, Pm)]

= min [d1 tan ω1; d2 tan ω2; d3 tan ω3; d4 tan ω4]

(3)

where D: is the perpendicular distance between the horizontal

plane Pm and roof’s inclined plane P1:4. The distance for e.g.

between P1 and Pm in Figure 2 is the actual roof’s height at that

point (x, y) and can be calculated as the product of the tangent

of plane’s P1 angle and the horizontal distance d1 lying on plane

Pm. D(P1, Pm) is, also, the minimum distance in that specific

point comparing with the ones that are formed with the other three

inclined planes.

Utilizing the 3D information fromH -either from point clouds or

from a height map- the corresponding energy E3D that recovers
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our five unknowns for a certain building i has been formulated as

follows:

E3D(Θi) =

m
∑

i=1

∫

Ωi

(hmi
+ hri

(x)−H(x))2 dx (4)

Each prior that has been selected for a specific region is forced

to acquire such a geometry so as at every point its total height

matches the one from the available DEM. It’s a heavily con-

strained formulation and thus robust. The introduced, here, recog-

nition driven framework now takes the following form in respect

to φ, Ti, L and Θi:

Etotal = Eseg(φ) + µE2D(φ, Ti,L) + µE3D(Θi) (5)

The energy term Eseg addresses fusion in a natural way and

solves segmentation φ in both I(x) and H(x) spaces. The term

E2D estimates which family of priors, i.e which 2D footprint i,

under any projective transformation Ti best fit at each segment

(L). Finally, the energy E3D recovers the 3D geometry Θi of

every prior by estimating building’s hm and hr heights.

4 QUALITATIVE AND QUANTITATIVE ASSESSMENT

OF THE PRODUCED 3D MODELS

The quality assessment of 3D data ( (Meidow and Schuster, 2005),(Sar-

gent et al., 2007) and their references therein) involves the assess-

ment of both the geometry and topology of the model. During

our experiments the quantitative evaluation was performed based

on the 3D ground truth data which were derived from a man-

ual digitization procedure. The standard quantitative measures of

Completeness (detection rate), Correctness (under-detection rate)

and Quality (a normalization between the previous two) were em-

ployed. To this end, the quantitative assessment is divided into

two parts: Firstly, for the evaluation of the extracted 2D bound-

aries i.e. the horizontal localization of the building footprints

(Figure 3) and secondly, for the evaluation of the hypsometric

differences i.e. the vertical differences between the extracted 3D

building and the ground truth (Figure 4).

In order to assess the horizontal accuracy of the extracted build-

ing footprints the measures of Horizontal True Positives (HTP),

Horizontal False Positives (HFP) and Horizontal False Negatives

(HFN), were calculated.

2D Completeness =
area of correctly detected segments

area of the ground truth

=
HTP

HTP + HFN

2D Correctness =
area of correctly detected segments

area of all detected segments

=
HTP

HTP + HFP

2D Quality =
HTP

HTP + HFP + HFN

Moreover, for the evaluation of the hypsometric differences be-

tween the extracted buildings and the ground truth the measures

of Vertical True Positives (VTP), Vertical False Positives (VFP)

and Vertical False Negatives (VFN) were, also, calculated. The

VTP are the voxels among, the corresponding Horizontal True

Positive pixels, that have the same altitude with the ground truth.

Note that Horizontal True Positives may correspond (i) to voxels

with the same altitude as in the ground truth (VTP) and (ii) to

voxels with a lower or higher altitude than the ground truth (VFN

and VFP, respectively). Thus, the Vertical False Positives are the

2D Quantitative Measures

Completeness Correctness Quality

0.84 0.90 0.76

3D Quantitative Measures

Completeness Correctness Quality

0.86 0.86 0.77

Table 1: Pixel- and Voxel-Based Quality Assessment

voxels with an hypsometric difference with the ground truth, con-

taining all the corresponding voxels from the HFP and the corre-

sponding ones from the HTP (those with a higher altitude than the

ground truth). Respectively, the Vertical False Negatives are the

voxels with an hypsometric difference with the ground truth, con-

taining all the corresponding voxels from the HFN and the corre-

sponding ones from the HTP (those with a lower altitude than the

ground truth). To this end, the 3D quantitative assessment was

based on the measures of the 3D Completeness (detection rate),

3D Correctness (under-detection rate) and 3D Quality (a normal-

ization between the previous two), which were calculated in the

following way:

3D Completeness =
V TP

V TP + V FN

3D Correctness =
V TP

V TP + V FP

3D Quality =
V TP

V TP + V FP + V FN

The developed algorithm has been applied to a number of scenes

where remote sensing data was available. The algorithm man-

aged in all cases to accurately recover their footprint and over-

come low-level misleading information due to shadows, occlu-

sions, etc. In addition, despite the conflicting height similar-

ity between the desired buildings, the surrounding trees and the

other objects the developed algorithm managed to robustly re-

cover their 3D geometry as the appropriate priors were chosen

(Figure 1). This complex landscape contains a big variety of tex-

ture patterns, more than 80 buildings of different types (detached

single family houses, industrial buildings, etc) and multiple other

objects of various classes. Two aerial images (with a ground res-

olution of appx. 0.5m) and a the coarser digital surface model

(of appx. 1.0m ground resolution) were available. The robust-

ness and functionality of the proposed method is illustrated, also,

on Figures 3 and 4, where one can, clearly, observe the Horizon-

tal and the Vertical True Positives, respectively. The proposed

generic variational framework managed to accurately extract the

3D geometry of scene’s buildings, searching among various foot-

print shapes and various roof types. The performed quantitative

evaluation reported an overall horizontal detection correctness of

90% and an overall horizontal detection completeness of 84%

(Table 1).

In Figure 4c, the hypsometric/vertical difference between the ex-

tracted buildings and the ground truth is shown. With a red color

are the VFN voxels and with a green color the VFP ones. Sim-

ilarly, at Figure 4c where the -corresponding among the HTP

pixels- VFN and VFP voxels are shown. The performed quan-

titative evaluation reported an overall 3D completeness and cor-

rectness of appx. 86% (Table 1).
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5 CONCLUSIONS AND FUTURE WORK

We have developed a generalized variational framework which

addresses large-scale reconstruction through information fusion

and competing grammar-based 3D priors. We have argued that

our inferential approach significantly extends previous 3D ex-

traction and reconstruction efforts by accounting for shadows,

occlusions and other unfavorable conditions and by effectively

narrowing the space of solutions due to our novel grammar rep-

resentation and energy formulation. The successful recognition-

driven results along with the reliable estimation of buildings 3D

geometry suggest that the proposed method constitutes a highly

promising tool for various object extraction and reconstruction

tasks.

Our a framework can be easily extended to process spectral infor-

mation, by formulating respectively the region descriptors and to

account for other types of buildings or other terrain features. For

real-time applications, the labeling function straightforwardly al-

lows a parallel computing formulation by concurrently recover-

ing the transformations for every region. In order to address the

sub-optimality of the obtained solution, the use of the compressed

sensing framework by collecting a comparably small number of

measurements rather than all pixel values is currently under in-

vestigation. Last, but not least introducing hierarchical procedu-

ral grammars can reduce the complexity of the prior model and

provide access to more efficient means of optimization.
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ABSTRACT: 
 
Light Detection and Ranging (LIDAR) systems have become a standard data collection technology for capturing object surface 
information and 3D modeling of urban areas. Although, LIDAR systems provide detailed valuable geometric information, they still 
require extensive interpretation of their data for object extraction and recognition to make it practical for mapping purposes. A 
fundamental step in the transformation of the LIDAR data into objects is the segmentation of LIDAR data through a clustering 
process. Nevertheless, due to scene complexity and the variety of objects in urban areas, e.g. buildings, roads, and trees, clustering 
using only one single cue will not reach meaningful results. The multi dimensionality nature of LIDAR data, e.g. laser range and 
intensity information in both first and last echo, allow the use of more information in the data clustering process and ultimately into 
the reconstruction scheme. Multi dimensionality nature of LIDAR data with a dense sampling interval in urban applications, provide 
a huge amount of valuable information.  However, this amount of information produces a lot of problems for traditional clustering 
techniques. This paper describes the potential of an artificial swarm bee colony optimization algorithm to find global solutions to the 
clustering problem of multi dimensional LIDAR data in urban areas. The artificial bee colony algorithm performs neighborhood 
search combined with random search in a way that is reminiscent of the food foraging behavior of swarms of honey bees. Hence, by 
integrating the simplicity of the k-means algorithm with the capability of the artificial bee colony algorithm, a robust and efficient 
clustering method for object extraction from LIDAR data is presented in this paper. This algorithm successfully applied to different 
LIDAR data sets in different urban areas with different size and complexities.  
 
 
 

1. INTRODUCTION 

The need for rapidly generating high-density digital elevation 
data for areas of considerable spatial extent has been one of the 
main motives for the development of commercial airborne laser 
scanning systems. During the last decade, several clustering and 
filtering techniques have been developed for the extraction of 
3D objects for city modelling applications or removing the 
“artefacts” of bare terrain (i.e. Buildings and trees) in order to 
obtain the true Digital Elevation Model (Filin and Pfeifer; 2006; 
Kraus and Pfeifer, 1998; Lodha et al., 2007; Rottensteiner and 
Briese, 2002; Tóvári and Vögtle, 2004). 

However due to low information content and resolution of 
available commercial LIDAR scanners, it is difficult to 
correctly recognize and remove 3D objects exclusively from 
LIDAR range data in urban areas (Maas, 2001; Samadzadegan, 
2004; Tao and Hu, 2001; Vosselman et al., 2004).  

In order to improve the performance of 3D object extraction 
process, additional data should be considered. Most LIDAR 
systems register, at least, two echoes of the laser beam, the first 
and the last echo, which generally correspond to the highest and 
the lowest object point hit by the laser beam. First and last echo 
data will especially differ in the presence of vegetation (Kraus, 
2002). Moreover, LIDAR systems record the intensity of the 
returned laser beam which is mainly in the infrared part of the 
electromagnetic spectrum. In addition, an extra powerful source 
of information is visible image. Digital images can provide 
additional information through their intensity and spectral 
content as well as their high spatial resolution which is better 
than the resolution of laser scanner data.  

Therefore, in the context of 3D object extraction in urban 
areas, various type of information can be fused to overcome 
the difficulties of classification and identification of 
complicated objects (Lim and Suter, 2007; Vosselman et al., 
2004). Collecting this information, extremely enlarge the size 
of data sets and proportionally the dimension of feature spaces 
in clustering process. As a result, most of traditional clustering 
techniques that have been applied with standard data and low 
feature space dimension are not efficient enough for object 
extraction process from LIDAR data (Melzer, 2007; Lodha et 
al., 2007).  

k-means is one of the most popular clustering algorithms for 
handling massive datasets. The algorithm is efficient at 
clustering large data sets because its computational 
complexity only grows linearly with the number of data points 
(Kotsiantis and Pintelas, 2004). However, the algorithm may 
converge to solutions that are not optimal. This paper presents 
an artificial bee colony (ABC) clustering algorithm for 
overcoming the existing problems of traditional k-means. 
 
 

2. BASIC CONCEPTS IN DATA CLUSTERING  

Historically, the notion of finding useful patterns in data has 
been given a variety of names including data clustering, data 
mining, knowledge discovery, pattern recognition, information 
extraction, etc (Ajith et al., 2006). Data clustering is an 
analytic process designed to explore data by discovering of 
consistent patterns and/or systematic relationships between 
variables, and then to validate the findings by applying the 
detected patterns to new subsets of data.  
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Data clustering is a difficult problem in unsupervised pattern 
recognition as the clusters in data may have different shapes and 
sizes. In the background of clustering techniques, the following 
terms are used in this paper (Jain et al., 1999): 
 A pattern (or feature vector), z, is a single object or data 

point used by the clustering algorithm. 
 A feature (attribute) is an individual component of a 

pattern. 
 A cluster is a set of similar patterns, and patterns from 

different clusters are not similar. 
  A distance measure is a metric used to evaluate the 

similarity of patterns. 

The clustering problem can be formally defined as follows (Jain 
et al., 1999): Given a data set Z={z1,z2, . . . ,zp, . . . ,zNp} where zp 
is a pattern in the Nd-dimensional feature space, and Np is the 
number of patterns in Z, then the clustering of Z is the 
partitioning of Z into K clusters {C1,C2, . . . ,CK} satisfying the 
following conditions: 
 Each pattern should be assigned to a cluster, i.e. 

ୀଵ
 ܥ ൌ ܼ  

 Each cluster has at least one pattern assigned to it, i.e. 
ܥ ് 0, ݇ ൌ 1, … ,  ܭ

 Each pattern is assigned to one and only one cluster  
ܥ ת ܥ ൌ 0, ݇ ݁ݎ݄݁ݓ ് ݆ 

As previously mentioned, clustering is the process of 
identifying natural groupings or clusters within 
multidimensional data based on feature space through similarity 
measure. Hence, similarity measures are fundamental 
components in most clustering algorithms (Jain et al., 1999). 
The most popular way to evaluate a similarity measure is the 
use of distance measures. The most widely used distance 
measure is the Euclidean distance, defined as: 

݀൫ݖ, ൯ݖ ൌ ට∑ ൫ݖ, െ ,൯ݖ
ଶே

ୀଵ ൌ ฮݖିݖฮ
ଶ
                (1) 

Generally, clustering algorithms can be categorized into 
partitioning methods, hierarchical methods, density-based 
methods, grid-based methods, and model-based methods. An 
excellent survey of clustering techniques can be found in 
(Kotsiantis and Pintelas, 2004). In this paper, the focus will be 
on the partitional clustering algorithms. Partitional clustering 
algorithms divide the data set into a specified number of 
clusters and then evaluate them by some criteria. These 
algorithms try to minimize certain criteria (e.g. a square error 
function) and can therefore be treated as optimization problems 
(Harvey et al., 2002; Omran et al., 2005; Wilson et al., 2002).  

The most widely used partitional algorithm in clustering 
techniques is the iterative k-means approach (Kotsiantis and 
Pintelas, 2004). The objective function J that the k-means 
optimizes is: 

ି௦ܬ ൌ ∑ ∑ ݀ଶ
ೖא௭


ୀଵ ൫ݖ, ݉൯                            (2) 

Where mk is the centroid of the k-th cluster. The membership 
and weight functions u for k-means are defined as: 

൯ݖ|൫݉ݑ ൌ ൜1         ݂݅ ݀ଶ൫ݖ, ݉൯ ൌ arg ݉݅݊൛݀ଶ൫ݖ, ݉൯ൟ
݁ݏ݅ݓݎ݄݁ݐ                                                             0

             (3) 

Consequently, the k-means method minimizes the intra-cluster 
distance. The k-means algorithm starts with k centroids (initial 
values are randomly selected or derived from a priori 
information). Then, each pattern zp in the data set is assigned to 
the closest cluster (i.e. closest centroid). Finally, the centroids 

are recalculated according to the associated patterns. This 
procedure is repeated until convergence is achieved. 

It is known that the k-means algorithm may reach local 
optimal solutions, depending on the choice of the initial 
cluster centres. Genetic algorithms have a potentially greater 
ability to avoid local optima through the localised search 
employed by most clustering techniques. Maulik and 
Bandyopadhyay (2004) proposed a genetic algorithm-based 
clustering technique, called GA-clustering, that proven to be 
effective in optimal clusters. With this algorithm, solutions 
(typically, cluster centroids) are represented by bit strings. The 
search for an appropriate solution begins with a population, or 
collection, of initial solutions. Members of the current 
population are used to create the next generation population 
by applying operations such as random mutation and 
crossover. At each step, the solutions in the current population 
are evaluated relative to some measures of fitness (which, 
typically, is inversely proportional to d), with the fittest 
solutions selected probabilistically as seeds for producing the 
next generation. The process performs a generate-and-test 
beam search of the solution space, in which variants of the 
best current solutions are most likely to be considered next. In 
the next section, an alternative clustering method to solve the 
local optimum problem of the k-means algorithm is described. 
The applied method adopts the artificial swarm bees algorithm 
as it has proved to give a more robust performance than other 
intelligent optimisation methods for a range of complex 
problems (Pham, 2006). 

3. CLUSTERING OF LIDAR DATA USING SWARM 
ARTIFICIAL BEE COLONY ALGORITHM 

Swarm Intelligence (SI) is an innovative distributed intelligent 
paradigm for solving optimization problems that originally 
took its inspiration from the biological examples by swarming, 
flocking and herding phenomena. These techniques 
incorporate swarming behaviours observed in flocks of birds, 
schools of fish, or swarms of bees, and even human social 
behaviour, from which the idea is emerged (Omran et al., 
2002, 2005; Paterlini and Krink, 2005;  Pham et al., 2006; Wu 
and Shi, 2001). Data clustering and swarm intelligence may 
seem that they do not have many properties in common. 
However, recent studies suggest that they can be used together 
for several real world data clustering and mining problems 
especially when other methods would be too expensive or 
difficult to implement. 

Clustering approaches inspired by the collective behaviours of 
ants have been proposed by Wu and Shi (2001), Labroche et 
al. (2001). The main idea of these approaches is that artificial 
ants are used to pick up items and drop them near similar 
items resulting in the formation of clusters. Omran et al. 
(2002) proposed particle swarm optimization (PSO) clustering 
algorithm. The results of Omran et al. (2002, 2005) show that 
PSO outperformed k-means, fuzzy c-means (FCM) and other 
state-of-the-art clustering algorithms. More recently, Paterlini 
and Krink (2005) compared the performance of k-means, 
genetic algorithm (GA), PSO and Differential Evolution (DE) 
for a representative point evaluation approach to partitional 
clustering. The results show that GAs, PSO and DE 
outperformed the k-means algorithm. Pham et al. (2006) used 
the artificial bee colony algorithm for clustering of different 
data sets. The obtained results of their work show that their 
proposed artificial bee colony algorithm has better 
performance than both of standard k-means as well as GA-
based method. In general, the literature review of recent 
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techniques in clustering shows that the swarm-based clustering 
algorithm performs better than the k-means algorithm. 
Clustering of massive LIDAR data and the unique potential of 
artificial bee colony algorithm in solving complex optimization 
problems are the core of this paper. The research work 
presented in this paper clearly show that the artificial swarm bee 
colony algorithm has clearly outperform k-means method in 
clustering of LIDAR data. 

3.1 Artificial Bee Colony Algorithm 

A colony of honey bees can extend itself over long distances in 
order to exploit a large number of food sources (Camazine et 
al., 2003; Pham et al., 2006) . The foraging process begins in a 
colony by scout bees being sent to search for promising flower 
patches. Flower patches with large amounts of nectar or pollen 
that can be collected with less effort tend to be visited by more 
bees, whereas patches with less nectar or pollen receive fewer 
bees (Camazine et al., 2003). 

 In the artificial bee algorithms, a food source position 
represents a possible solution to the problem to be optimized. 
Therefore, at the initialization step, a set of food source 
positions are randomly produced and also the values of control 
parameters of the algorithm are assigned. The nectar mount of a 
food source corresponds to the quality of the solution 
represented by that source. So the nectar amounts of the food 
sources existing at the initial positions are determined. In other 
words, the quality values of the initial solutions are calculated.  

Each employed bee is moved onto her food source area for 
determining a new food source within the neighbourhood of the 
present one, and then its nectar amount is evaluated. If the 
nectar amount of the new one is higher, then the bee forgets the 
previous one and memorizes the new one. After the employed 
bees complete their search, they come back into the hive and 
share their information about the nectar amounts of their 
sources with the onlookers waiting on the dance area. All 
onlookers successively determine a food source area with a 
probability based on their nectar amounts. If the nectar amount 
of a food source is much higher when compared with other food 
sources, it means that this source will be chosen by most of the 
onlookers. This process is similar to the natural selection 
process in evolutionary algorithms. Each onlooker determines a 
neighbour food source within the neighbourhood of the one to 
which she has been assigned and then its nectar amount is 
evaluated. 
 
3.2 Artificial Swarm Bee Colony Clustering Method 

The artificial swarm bee colony clustering method exploits the 
search capability of the Bees Algorithm to overcome the local 
optimum problem of the k-means algorithm. More specifically, 
the task is to search for appropriate cluster centres (c1, c2,...,ck) 
such that the clustering metric d (equation 1) is minimised. The 
basic steps of this clustering operation are: 

1. Initialise the solution population. 
2. Evaluate the fitness of the population. 
3. While (stopping criterion is not met)  

a. Form new population. 
b. Select sites for neighbourhood search by means of 

information in the neighbourhood of the present one. 
c. Recruit bees for selected sites (more bees for the best 

e sites) and evaluate fitness values. 
d. Select the fittest bee from each site. 
e. Assign remaining bees to search randomly and 

evaluate their fitness values. 
End While. 

Each bee represents a potential clustering solution as set of k 
cluster centres and each site represent the patterns or data 
objects. The algorithm requires some parameters to be set, 
namely: number of scout bees (n), number of sites selected for 
neighbourhood searching (m), number of top-rated (elite) sites 
among m selected sites (e), number of bees recruited for the 
best e sites (nep), number of bees recruited for the other (me) 
selected sites (nsp), and the stopping criterion for the loop. 

At the initialization stage, a set of scout bee population (n) are 
randomly selected to define the k clusters. The Euclidean 
distances between each data pattern and all centres are 
calculated to determine the cluster to which the data pattern 
belongs. In this way, initial clusters can be constructed. After 
the clusters have been formed, the original cluster centres are 
replaced by the actual centroids of the clusters to define a 
particular clustering solution (i.e. a bee). This initialization 
process is applied each time new bees are to be created. 

 In step 2, the fitness computation process is carried out for 
each site visited by a bee by calculating the clustering metric d 
(equation 1) which is inversely related to fitness. Step 3, is the 
main step of bee colony optimization, which start by forming 
new population (step 3-a). In step 3-b, the m sites with the 
highest fitness are designated as “selected sites” and chosen 
for neighbourhood search. In steps 3-c and 3-d, the algorithm 
conducts searches around the selected sites, assigning more 
bees to search in the vicinity of the best e sites. Selection of 
the best sites can be made directly according to the fitness 
associated with them. Alternatively, the fitness values are used 
to determine the probability of the sites being selected. 
Searches in the neighbourhood of the best e sites - those which 
represent the most promising solutions - are made more 
detailed. As already mentioned, this is done by recruiting 
more bees for the best e sites than for the other selected sites. 
Together with scouting, this differential recruitment is a key 
operation of the bee algorithm. In step 3-d, only the bee that 
has found the site with the highest fitness (the “fittest” bee) 
will be selected to form part of the next bee population. In 
nature, there is no such a restriction. This restriction is 
introduced here to reduce the number of points to be explored. 
In step 3-e, the remaining bees in the population are assigned 
randomly around the search space to scout for new potential 
solutions. At the end of each loop, the colony will have two 
stages to its new population: representatives from the selected 
sites, and scout bees assigned to conduct random searches. 
These steps are repeated until a stopping criterion is met. 

4. EXPERIMENTAL INVESTIGATIONS 

The airborne LIDAR data used in the experimental 
investigations have been recorded with TopScan's Airborne 
Laser Terrain Mapper system ALTM 1225 (TopScan, 2004). 
The data are recorded in area of Rheine in Germany. Two 
different patches with residential and industrial pattern were 
selected to test the developed algorithm. The selected areas 
were suitable for the evaluation of the proposed classification 
strategy because the required complexities (e.g. proximities of 
different objects e.g. building and tree) were available in the 
image (figure 1-a, b). The pixel size of the range images is one 
meter. This reflects the average density of the irregularly 
recorded 3D points which is fairly close to one point per m2. 
Intensity images for the first and last echo data have been also 
recorded and the intention was to use them in the experimental 
investigations, Figure 1 shows the details of the test data. The 
impact of trees in the first and last echo images can be easily 
recognized by comparing the two images of this figure. 
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Figure 1. a) Aerial image of residential area. b) Aerial image of 
industrial area. c) First echo LIDAR range data of residential 

area. d)  First echo LIDAR range data of industrial area. e) Last 
echo LIDAR range data of residential area. f) Last echo LIDAR 
range data of industrial area. g) Overlaid of manually digitized 
objects in residential area; h) Overlaid of manually digitized 

objects in residential area 

The first step in every clustering process is to extract the feature 
image bands. The features of theses feature bands should carry 
useful textural or surface related information to differentiate 
between regions related to the surface. Several features have 
been proposed for clustering of range data. Axelsson (1999) 
employs the second derivatives to find textural variations and 
Maas (1999) utilizes a feature vector including the original 
height data, the Laplace operator, maximum slope measures and 
others in order to classify the data.  In the following 
experiments we used five types of features: 
 LIDAR range data 
 The difference between first and last echo range images 
 Top-Hat filtered last echo range image 

   
a                                               b 

   
c                                                   d 

  
e                                               f 

Figure 2. a) Manually digitized objects in residential area. b) 
Manually digitized objects in industrial area. c) Clustering 

results of k-means in residential area. d) Clustering results of 
k-means in industrial area. e) Clustering results of artificial 

swarm bee colony algorithm in residential area. f) Clustering 
results of swarm bee algorithm in industrial area. 

 
 
 Local height variation which is computed using a small 

window (3*3) around a data sample.  
 Last echo intensity 

The normalized difference of the first and last echo range 
images is used as the major feature band for discrimination of 
the vegetation pixels from the others. According to the 
above defined features, the k-means and artificial 
swarm bee algorithm were developed based on the 
parameters listed in table 1.  

Table 1. Parameters used in the clustering of LIDAR datasets 

Algorithm Parameters Value  
k-means Maximum number of iterations 1000

Artificial 
swarm bee

colony 
algorithm

Number of scout bees, n 35 
Number of sites selected for neighbourhood 

search, m 
11 

 
Number of best “elite” sites out of m 

selected sites, e 
2 

Number of bees recruited for best e sites, 
nep 

7 

Number of bees recruited for the other (m-
e) selected sites, nsp 

3 

Number of iterations, R 200 
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Evaluation of these two algorithms for clustering of the data 
sets into three clusters (ground, tree, and building) is depicted in 
figure 2. Figures 2c and 2d show the k-means clustering results 
and figures 2e and 2f show the artificial bee colony algorithm 
clustering results in two evaluation areas. Building class regions 
are highlighted by red and vegetation class regions by green 
colour in figure 2. Visual inspections shows that vegetation 
class is directly associated with trees, bushes or forest and the 
building class is mainly associated with building regions.  

4.1 Accuracy Assessment 

Comparative studies on clustering algorithms are difficult due 
to lack of universally agreed upon quantitative performance 
evaluation measures. Many similar works in clustering use the 
classification error as the final quality measurement (Zhong and 
Ghosh, 2003); so in this research, we adopt a similar approach. 
In this paper, confusion matrix used to evaluate the true labels 
and the labels returned by the clustering algorithms as the 
quality assessment measure. If some ground truth is available, 
the relation between the ''true'' classes and the classification 
result can be quantified. With the clusters the same principle 
can be applied. Mostly a much higher number of clusters is then 
related to the given ground truth classes to examine the quality 
of the clustering algorithm. From the confusion matrix we 
calculate the Kappa Coefficient (Cohen, 1960). Although the 
accuracy measurements described above, namely, the overall 
accuracy, producer’s accuracy, and user’s accuracy, are quite 
simple to use, they are based on either the principal diagonal, 
columns, or rows of the confusion matrix only, which does not 
use the complete information from the confusion matrix. A 
multivariate index called the Kappa coefficient (Tso and 
Mather, 2009) overcomes these limitations. The Kappa 
coefficient uses all of the information in the confusion matrix in 
order for the chance allocation of labels to be taken into 
consideration. The Kappa coefficient is defined by: 
 

݇ ൌ
ܰ ∑ ݔ


ୀଵ െ ∑ ሺݔା ൈ ାሻݔ


ୀଵ

ܰଶ െ ∑ ሺݔା ൈ ାሻݔ
ୀଵ

 

 

In this equation, ݇ is the kappa coefficient, r is the number of 
columns (and rows) in a confusion matrix, xii is entry (i, i) of the 
confusion matrix, xi+ and x+i are the marginal totals of row i and 
column j, respectively, and N is the total number of 
observations (Tso and Mather, 2009). 

Table 2 shows the confusion matrix and Kappa coefficient of k-
means and artificial swarm bee colony algorithms clustering in 
residential dataset. The confusion matrix and Kappa coefficient 
of k-means and artificial swarm bee colony algorithms 
clustering in industrial dataset presented in Table 3. 
 
By comparing the counts in each class, a striking difference to 
the artificial swarm bee colony algorithm result is clearly 
observed. For the two classes of major interest in this study, the 
building class and tree class, the differences are quite 
significant. Visual interpretation clearly indicates that the 
building class of k-means not only include building areas but 
also regions related to roads which supports the smaller number 
of counts of the artificial swarm bee colony method to be more 
precise. Similarly the higher number of counts for the tree class 
indication (3D) vegetation regions (trees, bushes) obtained with 
the artificial swarm bee colony algorithm method is supported 
by visual interpretation. Overall performance of artificial bee 
colony algorithm is outperforming k-means clustering 
algorithm. This can be observed from the Kapa coefficient. 

Table 2. Confusion matrix and Kappa coefficient of k-means 
and artificial swarm bee colony algorithms in residential area. 

Reference Data 

k-
m

ea
ns

 

Total Ground Tree Building  

66227338 155164338Building 

681835930 586923561Tree 

355590290740 1050954341Ground 

490000297008 70752122240Total 
Kappa coefficient = 0.6927 

 

Reference Data 

B
ee

 a
lg

or
it

hm
s

 

Total Ground Tree Building  
1237595686 3471114602Building 

693916144 611232124Tree 

296850285078 75584214Ground 

490000296908 72152120940Total 
Kappa coefficient = 0.8916 

 
Table 3. Confusion matrix and Kappa coefficient of k-means 
and artificial swarm bee colony algorithms in industrial area. 

Reference Data 

k-
m

ea
ns

 
Total Ground Tree Building  

301541108 216826878Building 

3999105 3707187Tree 

168347139025 1287916443Ground 

202500140238 1875443508Total 
Kappa coefficient = 0.584 

 

Reference Data 

B
ee

 a
lg

or
it

hm
s

 

Total Ground Tree Building  
427832097 115839528Building 

177701290 15641839Tree 

141947134622 34833842Ground 

202500138009 2028244209Total 
Kappa coefficient = 0.866 

5. CONCLUSION 

This paper presented and tested a new clustering method 
based on the artificial bee colony algorithm in extracting 
buildings and trees form LIDAR data. The method employs 
the artificial swarm bee colony algorithm to search for the set 
of cluster centres that minimizes a given clustering metric. 
One of the advantages of this method is that it does not 
become trapped at locally optimal solutions. This is due to the 
ability of the artificial swarm bee colony algorithm to perform 
local and global search simultaneously. Experimental results 
for different LIDAR data sets have demonstrated that the 
artificial swarm bee colony algorithm method produces better 
performances than those of the k-means algorithm. One of the 
drawbacks of the artificial artificial swarm bee colony 
algorithm, however, is the number of tunable parameters it 
employs.  
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ABSTRACT:

In the context of 3D reconstruction of wide urban areas, the use of building footprints has shown to be of great help to achieve both
robustness and precision. These footprints however often present inconsistencies with the data (more than one building in the footprint,
inner courts, superstructures...) This paper presents a fast and efficient algorithm to enhance the building footprint database in order to
make subsequent 3D reconstructions easier, more accurate and more robust. It is based on a segmentation energy that is minimized by
a split and merge approach. The algorithm is demonstrated on a wide urban area of one square kilometer.

(a) Orthophotography and footprint (b) Shaded DEM and vegetation
mask

(c) Horizontal gradient (d) Vertical gradient

Figure 1: Input to our algorithm

1 INTRODUCTION

The production of 3D models of urban areas has received a lot
of attention from the scientific community in the last decade be-
cause of the broad range of its applications and the increase in
both quality and quantity of data. In this setup, it becomes more
and more crucial to design flexible tools to help human operators
achieving efficient and accurate reconstruction of wide urban ar-
eas.

1.1 Problem statement

The problem of urban reconstruction consists in finding a 3D
model (in general a polygonal surface) that is as coherent as pos-
sible with the input data. In our case where the footprints of
the buildings are given, we can use the efficient and robust ap-
proach proposed in (Durupt and Taillandier, 2006). However,
this approach relies heavily on the quality of the building foot-
print database, and might fail if the building to be reconstructed

contains altimetric discontinuities that are not present in its foot-
print. This often happens in practice, and especially when:
• Two (or more) adjacent buildings with different roof heights

share the same footprint.

• The real footprint of a building is only a portion of the foot-
print in the database (gardens, inner courts,...)

• The building has some superstructures which sizes and heights
are not negligeable with respect to the expected precision of
the reconstruction. This problem becomes increasingly dif-
ficult as reconstructions gain in precision, and has already
been tackled in the context of photogrammetry (Bredif et
al., 2007) (Dornaika and Bredif, 2008).

More difficult cases are often a combination of the three cited
above, and require a manual intervention to enable a further re-
construction. In general, this intervention consists in subdividing
the footprint by cutting through all (or most of) the altimetric dis-
continuities. In a production framework, where large areas need
to be extensively reconstructed, it appears that this building foot-
print database enhancement step is one of the most time consum-
ing. Hence, the problem that we tackle in this paper is that of
automatizing this enhancement as a required preprocessing step
to 3D reconstruction. More precisely, our problem is to segment a
polygonal footprint into a set of non-overlapping polygonal sub-
footprints that cover it entirely, such that the interface between
the sub-footprints corresponds to altimetric discontinuities. This
is a problem of segmentation of vector data (building footprints
database) guided by raster data (photos, DEM,...)

1.2 Available data

The data available in our study mainly consisted of:
• A set of 10 centimeter resolution aerial images with a high

recovery ratio around 60% (intraband + interband) in order
to ensure that each ground point is seen in at least 4 images,
covering an area of one square kilometer. The images are in
RGBI (the infrared channel is used to obtain the vegetation
mask).

• A vectorized cadastral map giving building footprints for the
same area. It consists in a set of polygonal footprints given
by their ordered list of points in ground coordinates (Figure
1(a), green).

From this initial data, existing algorithms can be run to extract:
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• A Digital Elevation Model (DEM) over the whole area (Fig-
ure 1(b)). It was obtained by dense correlation following
(Roy and Cox, 1998) and the implementation described in
(Pierrot-Deseilligny and Paparoditis, 2006).

• The gradient of the DEM (Figures 1(c) and 1(d)) computed
using a standard Canny-Deriche filter (Deriche, 1987).

• An orthophotography of the area (Figure 1(a)).

• A vegetation mask (Figure 1(b), red) obtained by the method
exposed in (Iovan et al., 2007).

The initial data and extracted data form the input to our algorithm.

1.3 Previous works

The idea of using a 2D building footprint to enhance 3D building
reconstruction first appeared in (Pasko and Gruber, 1996), and
was developed in (Roux and Maitre, 1997), (Brenner, 2000) and
(Jibrini et al., 2000). This idea is also at the core of the recon-
struction method (Durupt and Taillandier, 2006) for which we
designed our building footprint enhancement algorithm, and to
the more general framework (Taillandier, 2005) from which it
derives. In the context of laser data, it is also central to the works
of Vosselman et. al. (Vosselman and Dijkman, 2001) (Vosselman
and Suveg, 2001) (Suveg and Vosselman, 2001).

To the best of our knowledge, segmentation of building footprints
has never been decoupled from the reconstruction itself as done
in this paper, but used to find directly planar regions.

1.4 Proposed approach

In this paper we call P the polygonal footprint to segment, Pi

the polygonal sub-footprint resulting from the segmentation and
Ij

i = Pi ∩ Pj the interface between two sub-footprints (it is an
edge or set of edges in some cases). The result of our algorithm is
a segmentation of P that is given indifferently by the set of sub-
footprints Pi or by the interface I = ∪i<jI

j
i between the Pi (it

is a set of edges).

The approach that we propose consists in defining an energy that
is negative (resp. positive) on edges that are likely (resp. unlikely)
to be altimetric discontinuities, and to find the segmentation that
minimizes the sum of this energy over the edges of I. We start
by choosing a gradient threshold T∇ such that we consider that a
point where the gradient value is above (resp. below) T∇ is likely
(resp. unlikely) to be on an altimetric discontinuity. The energy
on an edge e can then be defined as:

E(e) =

∫
P∈e

T∇ − |∇z(P ).−→n (e)|dP (1)

where z is the height at point P given by the DEM and −→n (e) is
a unit vector normal to e. As required, E(e) is negative when the
mean absolute gradient across e is greater than T∇.

To simplify this problem, and gain in robustness and quality, we
will restrict the directions of the interface edges to follow direc-
tions present in the original footprint, which is not a strong condi-
tional assumption. This proved to be true on most examples that
we have tested. In order to solve this problem, we propose a split
and merge approach based on principal directions detected on the
initial footprint P:

1. Cluster the directions of the footprint’s edges in a direction
space taking their lengths into account.

2. Recursively split the footprint along lines of minimal energy.

(a) Two hypotheses for a
snapped cut

(b) Two hypotheses for a dou-
ble cut

Figure 2: Cutting hypotheses. The eroded footprint is darkened.

3. Merge the resulting sub-footprints in order to minimizeE(I).

The first step is a simple clustering in the space of line angles
(modulus π), and does not require special care. Simply notice
that we should keep the number of direction clusters as small as
possible, for instance by eliminating the clusters which edges’
length sum is smaller than a given threshold, or a ratio of the
“largest” cluster.

In our algorithm, we will often need to compute energies of the
form given by (1) thus to access the gradient across edges that
can only be in a limited number of directions. Thus for efficiency
reasons, we will precompute the gradient for each direction on a
grid aligned with the direction and with the same resolution than
the DEM. These grids will serve a double purpose as they will
also be used to discretize our cutting lines.

2 RECURSIVE SPLIT

2.1 Cutting hypotheses

For each direction, we will discretize the set of possible cut lines
Ci as the lines passing through the (center of) rows of pixels in
our grids for each direction. This way the integral of the gradient
over an edge in this line’s direction will simply be computed as a
sum over pixels of the same row in the grid.

As our input footprint might not be convex, a cut might generate
more than 2 sub-footprints. In this case, the same cut line Ci

generates several cutting hypotheses, one for each edge of P ∩Ci

(see Figure 2(b)). Similarly, we snap our cuts by prolongating the
initial footprint’s edges, and generating a new cut hypothesis for
each part of the cut (see Figure 2(a)). This way, each cutting
hypothesis consists of the two footprints generated by the split,
and their interface I which is a single edge.

This process however can introduce extremely poorly shaped foot-
prints and small footprints that are not desired in the final solu-
tion. To prevent the occurrence of such bad geometries, we build
an erosion Pe of the footprint P by a centered segment of length
d orthogonal to the current direction (see Figure 3). This erosion
is then used to discard the cutting hypotheses for which:

|I ∩ Pe| < |I|/2 (2)
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Figure 3: Erosion of the input footprint (green) by a flat rhombus
(blue) of height d orthogonal to a main direction (red).

which means that the splitted footprints have a width of at least d
on at least half of their length. Hence, the parameter d is used to
indicate minimum expected size of a footprint. For instance the
hypothesis in Figure 2(b) (top) is discarded because the top right
triangle satisfies this criterion (it has |I ∩Pe| = 0). This geomet-
ric criterion proved to be the most robust in our experiments, and
it was implemented using the CGAL Minkowsky sums. Note that
we replaced the segment by a flat rhombus to avoid degeneracies.

2.2 Cut score

For each cut hypostesis, we can compute a cutting score as the
energy E(I) restricted to the cut. To enhance this estimation we
take into account the following facts:
• An existing edge corresponds to an altimetric discontinuity.

Hence the gradient in its vicinity should not be taken into
account for the score of a new cut. Thus the meaningful
zone is defined by the erosion of the footprint by a centered
segment. Ideally, the length of this segment should equal the
size of the kernel used to compute the gradient. In practice,
it should be even greater as the edges of the footprint are not
exactly located on discontinuities. We chose the same length
d as before, such that we only need to compute one erosion
per footprint and per direction. We chose to compute the
erosion with CGAL’s exact arithmetics as we encountered
failure cases using inexact computations. This is quite time
consuming, such that the choice of taking the same parame-
ter is really saving us time.

• Vegetation hides the geometry of the building so the DEM
will be considered not pertinent within the vegetation mask.

• The DEM is more inaccurate in shadowed areas.
These three facts are integrated in the computation of E(I) by
weighting the gradients by a confidence term that is 0 outside the
eroded footprint and in vegetation areas, and elsewhere propor-
tional to luminosity.

2.3 Recursion

For the input footprint P , we can build the cutting hypotheses
(Section 2.1) and their scores (Section 2.2). We select the cutting
hypothesis with the lowest score and apply it to the footprint P ,
which splits it into two sub-footprints P1 and P2. We apply this
process again to P1 and P2, and so on recursively.

To ensure that our cuts minimize E, we stop the recursion when
the lowest score becomes positive. In that case the footprint is
final and will not be splitted. Our shape criterion (2), guarantees
that the width of the resulting sub-footprints is greater than d in
each direction.

2.4 Results

As figure 4 shows, the segmentation resulting from the recursive
split runs through most of the altimetric discontinuities. How-
ever, the segmentation presents many undesired cuts as our cuts
are straight so they run through the whole footprint when they
may correspond to much more local altimetric discontinuities.
To achieve a better segmentation, and further minimize our en-
ergy, we need to remove these superfluous cuts by merging sub-
footprints whenever this improves the energy E(B).

3 MERGE

3.1 Geometric polygon merging

Merging the sub-footprints resulting from the splitting process
can be tricky as numerical precision forces us to use thresholds
to determine whether two edges from different polygons touch
or not. To make the merge process independent from numerical
precision and thresholds, we label all edges produced during the
splitting process by (a pointer to) the cut line that produced it.
This way, the merging algorithm is both robust and simple:

1. For each pair of edges ei
k ∈ Pi and ej

l ∈ Pj belonging to
the same cut line:

• Compute the intersection edge ek,l = ei
k ∩ e

j
l

• If ek,l 6= ∅, add ek,l to Ii,j .

2. Build the connected components of Ii,j . If there are more
than one, this means that the merged footprint has holes. We
need to prevent these holes to appear as they are harder to
handle in the reconstruction process. To do so, we keep only
one connected component in Ii,j (the longest or the one with
lowest score).

3. Build the merged footprint Pi,j :

• For each interface edge ek,l ∈ Ii,j tag ei
k and ej

l as
interface edges.

• Build the connected components Ci and Cj of edges
of Pi and Pj not tagged as interface.

• Connect the endpoints of Ci and Cj (this is unam-
biguous if Pi and Pj where properly oriented).

3.2 Merging algorithm

The merging process goes as follows:

1. Compute all possible merges, their interfaces Ii,j and scores
Si,j = E(Ii,j).

2. Build a priority queue of all merges, where the priority is
the score Si,j . Remember that a high score means it is
likely that the interface is not an altimetric discontinuity so
it should be removed from the final cut.

3. While the merge with highest priority is positive:

• Apply the merge with highest priority Si,j between
footprints Pi and Pj by replacing Pi and Pj by their
union Pi,j = Pi ∪ Pj .

• Remove all merges involving Pi and Pj from the pri-
ority queue.

• Compute all possible merges involving Pi,j , their in-
terfaces, their scores, and add them in the priority
queue.
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(a)

(b)

(c)

Figure 4: Results of the splitting process

(a)

(b)

(c)

Figure 5: Results of the merging process
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3.3 Results

The merging process ensures that the result is a valid segmenta-
tion of the input footprint into a set of sub-footprints. As seen
in Figure 5, the algorithm is general enough to allow for a broad
range of possible sub-footprints, while being constrained enough
(in particular by the allowed directions and minimum size d) to
avoid overly complex shapes. The advantage is that such simple
shapes are proper for reconstruction. The inconvenient is that if
discontinuities do not follow the detected directions, they will not
be detected and lead to inconsistencies. Finally, note that as we
prevent holes from appearing, inner courts stay connected to the
outer boundary (there are two examples of that behavior in Figure
5(c))

4 DISCUSSION

Our method allows for a much more accurate 3D reconstruction
on footprints with inner altimetric discontinuities as shown in
Figures 6 and 7. However, it sometimes misses some global cuts
that are obvious to the eye but do not correspond to altimetric dis-
continuities. For instance Figure 6 show that a single (and small)
handmade cut relying more on a global perception of the foot-
print shape than on an altimetric discontinuity allows for a great
improvement of the result.

This method is proposed as a tool to support the reconstruction of
wide urban areas. The splitting and merging results shown here
are all obtained based on the same parameters. The tuning param-
eters are mainly the erosion width d that controls the minimum
footprint size and gradient threshold T∇ that serves to specify the
limit between what is a discontinuity and what is not. They are
intuitive and simple to tune. In practice, we used the same stan-
dard parameters (d = 1.5m, T∇ = 3.5) to process an entire 1km
by 1km working area.

Step (a) (b) (c)
Load inputs 0.27 0.4 0.27
Precompute 0.24 0.44 0.12

Erosions 0.2 0.19 0.36
Scores 0.15 0.2 0.1
Splits 0.23 0.17 0.15
Merge 0.01 0.01 0.04
Total 1.1 1.41 1.04

Table 1: Timings (in seconds on a 2.8GHz Pentium 4 processor)
of the different steps of the algorithm. The three columns corre-
spond to the examples shown on figures 4 and 5.

In terms of computation time, the algorithm is extremely fast (see
table 1). This makes it possible to process very wide working
zones rapidly, or to tune the parameters interactively.

The algorithm is heavily dependant on the quality of the input
DEM, and only very weakly on the orthophotography and veg-
etation mask (the latter only serves when the footprint contains
vegetation that has an important impact on the DEM, which is
quite rare). The most important problems that we encountered
are:

• The DEM has a poor quality on shadows as it requires a
good contrast. As roughly half of the altimetric discontinu-
ities generate a shadow at their bottom, half of the altimetric
discontinuities are not accurately represented in the DEM.
We simply added a confidence parameter to handle this is-
sue, but we believe some more adequate solutions can be
found.

• If the footprint contains an important altimetric discontinu-
ity that is not aligned with one of the clustered direction,
it will perturb the splitting as it will add an important fac-
tor to the energy of all cuts not exactly orthogonal to it. To
limit this effect we penalized wrong gradient directions by
weighting the gradient by a factor max

(
0, cos(2(~n, ~∇z))

)
that smoothly decreases from 1 (perfect direction) to 0 for
angles greater that π/4.

• Superstructures cause altimetric discontinuities that are of-
ten close to or higher than discontinuities between different
buildings. Thus they may generate cuts even with a fine
tuning of T∇. A possible remedy would be to implement a
superstructure detection such as (Bredif et al., 2007) prior to
cutting.

The energy that we use matches closely the Mumford and Shah
segmentation formulation (Mumford and Shah, 1989) except that
it has no data attachment term. This drawback is inherent to the
problem that we pose, and its consequence will be that we lack
of a global quality measure. This will sometimes lead to a lack of
global coherence, such as missing a small cut that would enhance
greatly the reconstruction (see Figure 6). A workaround would
be to interact with the reconstruction method, and for instance
only split footprints on which the reconstruction is bad (far from
the DEM). As this estimation needs to be done many times, this
would require the reconstruction to be very fast, which is not the
case for the one that we were working with (at least for complex
footprints).

The fact that this energy is not necessarily positive makes it im-
possible to minimize with graph cuts based segmentation where
the non-negativity of weights is a fundamental requirement (Kol-
mogorov and Zabih, 2004). However, this energy is very natural
for segmenting with an unknown a priori number of regions, as
minimizing this energy will naturally lead to an optimal number
of region, without the need to specify a source/sink pair. For in-
stance, not cutting is a solution like any other, and it has its own
energy that can be optimal in the case that no segmentation is
required (which is the case on many footprints that are adequate
for reconstruction without enhancement). In contrast, graph cut
energy is always lower for not cutting than for cutting, and the re-
sult is in fact the optimum over bipartition. The drawback is that
we cannot use the very efficient graph cut algorithm and need a
heuristic approach with no guarantee on optimality.

5 CONCLUSIONS AND FUTURE WORK

We have presented an algorithm to split cadastral maps into smaller
regions proper for subsequent 3D reconstruction. The algorithm
has only be tested for one reconstruction method but the authors
believe it might be a useful preprocessing step to any 3D recon-
struction method based on the cadastral map or any other vec-
torial footprint of the building to reconstruct. The algorithm is
simple and fast, as it has been designed with the purpose of help-
ing reconstruction of large urban areas.

In the future, we plan on running this algorithm in a production
framework to have a better feedback on its large scale usability.
We will also look into correcting the DEM in shadowed area, or
maybe detection of altimetric discontinuities directly based on
correlation in the aerial images. Finally, we will look into less
heuristic means of minimizing our energy, especially in the merg-
ing phase.
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Figure 6: Reconstruction results on the example of Figures 4(b)
and 5(b). From top to bottom: reconstruction without enhance-
ment, with enhancement, with enhancement and a single manual
cut. This manual cut improves greatly the result but cannot be
detected based on our method as the altimetric discontinuity is
too low.
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Figure 7: Untextured and textured 3D reconstruction results on
the example of Figures 4(c) and 5(c). Top: reconstruction without
enhancement, Bottom: with enhancement
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ABSTRACT: 
 
The update of databases – in particular 2D building databases – has become a topical issue, especially in the developed countries 
where such databases have been completed during the last decade. The main issue here concerns the long and costly change 
detection step, which might be automated by using recently acquired sensor data. The current deficits in automation and the lack of 
expertise in the domain have driven the EuroSDR to launch a test comparing different change detection approaches, representative of 
the current state-of-the-art. The main goal of this paper is to present the test bed of this comparison and the results that have been 
obtained for three different contexts (aerial imagery, satellite imagery, and LIDAR). In addition, we give the overall findings that 
emerged from our experiences and some promising directions to follow for building an optimal operative system in the future. 
 
 

1. INTRODUCTION 

The production of 2D topographic databases has been 
completed in many industrialised countries. Presently, most 
efforts in the National Mapping and Cadastral Agencies 
(NMCAs) are devoted to the update of such databases. As the 
update process is generally carried out manually by visual 
inspection of orthophotos, it is time-consuming and expensive. 
As a consequence, its automation is of high practical interest for 
the NMCAs. The update procedure can be split into two steps: 
change detection, in which the outdated database is compared 
to recently collected sensor data in order to detect changes, and 
vectorization, i.e. the digitization of the correct geometry of the 
changed objects. Given the state-of-the-art in automatic object 
detection (Mayer, 2008), only the automation of the change 
detection step seems to be possible at this time. The key idea is 
to focus the operator’s attention on the areas that may have 
changed. Work is saved because the operator needs not inspect 
areas classified as unchanged by the automatic procedure.  
 
The current deficits in automation and the lack of expertise 
within the NMCAs have driven the EuroSDR (European Spatial 
Data Research - http://www.eurosdr.net) to lauch a project 
about change detection. It also aims at evaluating the feasibility 
of semi-automatically detecting changes in a 2D building vector 
database from optical imagery or LIDAR. Three subtopics are 
investigated in detail, firstly the impact of methodology; 
secondly, the impact of the type and spatial resolution of input 
data; lastly, the impact of the complexity of the scene in terms 
of interfering objects such as roads. The methodology consists 
in comparing four different algorithms representative for the 
current state-of-the-art in the field of change detection. First 
results, achieved for the cases where only aerial and satellite 
images are used, were presented in (Champion et al., 2008). The 
results obtained there showed the limitations of change 
detection methods, especially in relation to the quality of input 

data. The main goal of this paper is to present the final results of 
the project, including a LIDAR dataset, and to give a detailed 
evaluation of the outcomes delivered by the approaches 
compared here. 
 
After describing the datasets and the evaluation procedure 
(Section 2), the methods compared in the test are concisely 
introduced (Section 3). In Section 4, a thorough evaluation is 
carried out, including an analysis of the performance of change 
detection with respect to the update status of the buildings and 
the building size. The weak and strong points are then identified 
both for the datasets and the methodologies, and they used to 
give overall findings and recommendations for building an 
optimal operative system for change detection in the future. 
 
 

2. INPUT DATA AND TEST SET-UP 

Three test areas are used for the comparison: Marseille (France), 
Toulouse (France), and Lyngby (Denmark). The area covered 
by the test sites is 0.9 x 0.4 km2 in Marseille, 1.1 x 1.1 km2 in 
Toulouse, and 2.0 x 2.0 km2 in Lingby. The test areas differ 
considerably regarding topography, land use, urban 
configuration and roofing material. The terrain is hilly in 
Marseille and Toulouse and relatively flat in Lyngby. Marseille 
features a densely built-up area consisting of small buildings of 
variable height, all connected to each other and mostly covered 
with red tile. Toulouse and Lyngby feature a suburban area, 
mostly composed of detached buildings and characterised by a 
large variety of roofing materials such as slate, gravel, or 
concrete. Colour Infrared (CIR) orthophotos and Digital 
Surface Model (DSMs) are available for all test areas. In 
Marseille and Toulouse an image matching algorithm (Pierrot-
Deseilligny and Paparoditis, 2006) was used to derive the DSM 
from input images. In Marseille, these images are multiple aerial 
images having a forward and side overlap of 60%. The Ground 
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Sample Distance (GSD) of all input data is 0.2 m. In Toulouse, 
these images are Pléiades tri-stereoscopic satellite images. The 
GSD of all input data is 0.5 m. Lastly, the DSM used in Lyngby 
was derived from first pulse LIDAR data, and the digital 
orthophoto was generated from a scanned aerial image, both 
with a GSD of 1 m. For the three test areas, up-to-date vector 
databases representing the 2D outlines of buildings were 
available. They served as a reference in the test. In order to 
achieve an objective evaluation, the outdated databases were 
simulated by manually adding or removing buildings Thus, 107 
changes (out of 1300 buildings in the scene) were simulated in 
Marseille (89 new and 18 demolished buildings); 40 (out of 
200) in Toulouse (23 new, 17 demolished) and 50 (out of 500) 
in Lyngby (29 new, 21 demolished). The outdated databases 
were converted to binary building masks having the same GSD 
as the input data and then distributed to the participants along 
with input data. 
 
Each group participating in the test was asked to deliver a 
change map in which each building of the vector database is 
labelled either as unchanged, demolished or new. Because the 
methods have been developed in different contexts, their 
designs noticeably differ, for instance regarding the definitions 
of the classes considered in the final change map – e.g. four 
classes for (Champion, 2007) and six classes for (Rottensteiner, 
2008) – and the format of the input data – e.g. vector for 
(Champion, 2007) and raster for (Matikainen et al., 2007). As a 
work-around, it was decided to use the building label image 
representing the updated version of the building map (cf. 
Section 3) for the evaluation of those methods that do not 
deliver the required change map in the way described above. 
Only the method by (Champion, 2007) delivered such a change 
map, which was also directly used in the evaluation.  
 
In order to evaluate the results achieved by the four algorithms, 
they are compared to the reference database, and the 
completeness and the correctness of the results (Heipke et al., 
1997) are derived as quality measures: 
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In Equation 1, TP, FP, and FN are the numbers of True 
Positives, False Positives, and False Negatives, respectively. 
They refer to the update status of the vector objects in the 
automatically-generated change map, compared to their real 
update status given by the reference. In the case where the final 
change map is directly used for the evaluation, i.e. with 
(Champion, 2007), a TP is an object of the database reported as 
changed (demolished or new) that is actually changed in the 
reference. A FP is an object reported as changed by the 
algorithm that has not changed in the reference. A FN is an 
object that was reported as unchanged by the algorithm, but is 
changed in the reference. In the three other cases, where a 
building label image representing the updated map is used for 
the evaluation, the rules for defining an entity as a TP, a FP, or 
a FN had to be adapted. In these cases, any unchanged building 
in the reference database is considered a TN if a predefined 
percentage (Th) of its area is covered with buildings in the new 
label image. Otherwise, it is considered a FP, because the 
absence of any correspondence in the new label image indicates 
a change. A demolished building in the reference database is 
considered a TP if the percentage of its area covered by any 

building in the new label image is smaller than Th. Otherwise, it 
is considered to be a FN, because the fact that it corresponds to 
buildings in the new label image indicates that the change has 
remained undetected. A new building in the reference is 
considered a TP if the cover percentage is greater than Th. 
Otherwise, it is considered a FN. The remaining areas in the 
new label image that do not match any of the previous cases 
correspond to objects wrongly alerted as new by the algorithm 
and thus constitute FPs. 
 
The quality measures are presented in the evaluation on a per-
building basis (rather than on a per-pixel basis), as the 
effectiveness of a change detection approach is limited by the 
number of changed buildings that is missed or over-detected 
and not by the area covered by these buildings. As explained in 
the Section 4, these quality measures are also computed 
separately for each change class. 
 
 

3. CHANGE DETECTION APPROACHES 

The four methods tested in this study are concisely presented, 
ordered alphabetically according to the corresponding author. 
 
Champion, 2007: The input of the method is given by a DSM, 
CIR orthophotos and the outdated vector database. Optionally, 
the original multiple images can also be used. The outcome of 
the method is a modified version of the input vector database, in 
which demolished and unchanged buildings are labelled and 
vector objects assumed to be new are created. The method starts 
with the verification of the database, where geometric 
primitives extracted from the DSM (2D contours, i.e. height 
discontinuities) and, optionally, from multiple images (3D 
segments), are collected for each object of the existing database 
and matched with primitives derived from it. A similarity score 
is then computed for each object and used to achieve a final 
decision about acceptance (unchanged) and rejection (changed 
or demolished). The second processing stage, i.e. the detection 
of new buildings, is based on a Digital Terrain Model (DTM) 
automatically derived from the DSM (Champion and Boldo, 
2006), a normalised DSM (nDSM), defined as the difference 
between the DSM and the DTM, and an above-ground mask, 
processed from the nDSM by thresholding. Appropriate 
morphological tools are then used to compare this latter mask to 
the initial building mask derived from the vector database and a 
vegetation mask computed from CIR orthophotos and an image 
corresponding to the Normalised Difference Vegetation Index 
(NDVI), which results in the extraction of new buildings. 
 
Matikainen et al., 2007: The building detection method of the 
Finnish Geodetic Institute (FGI) was originally developed to 
use laser scanning data as primary data. In this study, it is 
directly applied to the input DSM and CIR orthophotos. A 
raster version of the database (for a part of the study area) is 
used for training. The method includes three main steps. It starts 
with segmentation and a two-step classification of input data 
into ground and above-ground, based on a point-based analyisis 
followed by an object-based analysis and using the Terrasolid1 
and Definiens2 software systems. This is followed by the 
definition of training segments for buildings and trees and the 
classification of the above-ground segments into buildings and 
trees. This classification is based on predefined attributes and a 
classification tree (Breiman et al., 1984). A large number of 

                                                                 
1 http://www.terrasolid.fi/. Last visited: 30 June 2009. 
2 http://www.definiens.com/. Last visited: 30 June 2009. 
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attributes can be used, e.g. mean values, standard deviations, 
texture and shape of the segments. The method automatically 
selects the most useful ones for classification. In the Marseille 
area, the criteria selected in the tree included only the NDVI. In 
the Lyngby area, NDVI and a shape attribute were selected. The 
third stage consists of a post-processing step that analyses the 
size and neighborhood of building segments and corrects their 
class accordingly. Building detection results in a building label 
image which is used for the comparison in our test. 
 
Olsen and Knudsen, 2005: The input of the method is given by 
a DSM, CIR orthophotos and a raster version of the outdated 
database. The method starts with the generation of a DTM, 
estimated from the DSM through appropriate morphological 
procedures, a nDSM and an Object Above Terrain (OAT) mask. 
This is followed by a two-step classification that aims at 
distinguishing building from no building objects. This 
classification is based on criteria that best characterise buildings 
(especially in terms of size and form) and results in the building 
label image that is used for the evaluation in this study. The last 
stage is the actual change detection step, in which the 
classification outcomes is compared to the initial database in 
order to extract a preliminary set of potential changes (on a per-
pixel basis) that is then post-processed in order to keep only the 
objects that are assumed to have changed. 
 
Rottensteiner, 2008: This method requires a DSM as the 
minimum input. Additionally it can use an NDVI image, height 
differences between the first and the last laser pulse, and the 
existing database, available either in raster or vector format. The 
workflow of the method starts with the generation of a coarse 
DTM by hierarchical morphological filtering, which is used to 
obtain a nDSM. Along with the other input data, the nDSM is 
used in a Dempster-Shafer fusion process carried out on a per-
pixel basis to distinguish four object classes: buildings, trees, 
grass land, and bare soil. Connected components of building 
pixels are then grouped to constitute initial building regions and 
a second Dempster-Shafer fusion process is performed on a per-
region basis to eliminate remaining trees. Finally, there is the 
actual change detection step, in which the detected buildings are 
compared to the existing map, which produces a change map 
that describes the change status of buildings, both on a per-pixel 
and a per-building level. Additionally, a label image 
corresponding to the new state of the data base is generated. In 
spite of the thematic accuracy of the change map produced by 
this method, it was decided to use this building label image for 
the evaluation in this test. 
 
 

4. EVALUATION AND DISCUSSION 

In our opinion, the effectiveness of a change detection system is 
related to its capacity to guide the operator’s attention only to 
objects that have changed so that unchanged buildings do not 
need to be investigated unnecessarily. These considerations 
result in the evaluation criteria used in this paper to analyze the 
change detection performance. On the one hand, to support the 
generation of a map that is really up-to-date, i.e. to be effective 
qualitatively, the completeness of the system for buildings 
classified as demolished and the correctness for unchanged 
buildings are required to be high. The completeness of new 
buildings also has to be high if the operator is assumed not to 
look for any new building except for those which are suggested 
by the system. (Note that this also holds true for modified 
buildings, a case not considered in this study because the 
simulated changes only consisted in new and demolished 

buildings). On the other hand, to reduce the amount of manual 
work required by the operator i.e. to be effective economically, 
the correctness of the changes highlighted by the system and the 
completeness of unchanged buildings must be high. However, if 
a low completeness of unchanged buildings implies that many 
buildings are checked uselessly, this is not necessarily critical 
for the application itself, because the updated database is still 
correct. Moreover, the economical efficiency that could then 
appear to be low has to be put into perspective according to the 
size of the building database to update. For instance, if a change 
detection system reports 60% of a national database as changed, 
we cannot necessarily conclude about the inefficiency of this 
system because it still means that 40% of the buildings need not 
be checked, which amounts to millions of buildings. 
 
4.1 Overall Analysis  

Figure 1 presents the evaluation of the results achieved by the 
methods that processed the Lingby test area (LIDAR context). 
Table 1 gives the per-building completeness and correctness, 
obtained for each test area and each approach. The Th parameter 
(cf. Section 2.) was set to 0.20 for the Marseille and Lyngby test 
areas and 0.26 for the Toulouse test area. In Table 1, the values 
in bold indicate for which methods the best results are achieved. 
The completeness of detected changes is high for all the 
methods, especially in the aerial (Marseille) and LIDAR 
(Lyngby) contexts. By contrast, the correctness observed in our 
experiments is relatively poor, which indicates that there are 
many FP changes reported by the systems. In this respect, only 
the results obtained in the Lyngby test area with (Rottensteiner, 
2008) seem to achieve a relatively acceptable standard. 
 
 

Approach Completeness Correctness  
Marseille (Imagery – Aerial context) 

(Champion, 2007) 94.1% 45.1% 
(Matikainen et al., 2007)  98.8% 54.3% 
(Rottensteiner, 2008) 95.1% 59.1% 

Toulouse (Imagery – Satellite context) 
(Champion, 2007)  78.9% 54.5% 
(Rottensteiner, 2008) 84.2% 47.1% 

Lyngby (LIDAR context) 
(Matikainen et al., 2007) 94.3% 48.8% 
(Olsen and Knudsen, 2005) 95.7% 53.6% 
(Rottensteiner, 2008)  91.4% 76.1% 

 

Table 1. Completeness and Correctness achieved by the four 
algorithms for the three datasets.   

 
 

To take the analysis further, we also determined the quality 
measures separately for unchanged, demolished and new 
buildings. They are presented in Tables 2 (Marseille), 3 
(Lyngby) and 4 (Toulouse), respectively. Focusing on the 
Marseille test area first, it can be seen in Table 2 that all 
algorithms are effective in detecting the actual changes. Thus, 
(Matikainen et al., 2007) and (Rottensteiner, 2008) achieve a 
completeness of 100% for demolished buildings. The 
correctness for unchanged buildings is also 100%. The few 
(11.1%) demolished buildings missed by (Champion, 2007) are 
caused by extracted primitives that are erroneously used in the 
verification procedure. All three methods also feature a high 
completeness for new buildings. Here, (Matikainen et al., 2007) 
performs best, with only 2.4% of the new buildings missed. The 
main limitation of this context appears to be the poor 
correctness rate achieved for demolished buildings, which  
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Figure 1. Evaluation of change detection in Lyngby, for (a), (b) and (c) Green: TP; red: FN; orange: FP; blue: TN. 
  

 
 

 Unchanged Demolished New 

(Champion, 2007) 

Completeness [%] 93.5 88.9 95.2 
Correctness [%] 99.8 18.4 63.5 
(Matikainen et al., 2007) 
Completeness [%] 94.7 100 97.6 
Correctness [%] 100 23.7 75.6 
(Rottensteiner, 2008)  
Completeness [%] 94.1 100 94.0 
Correctness [%] 100 22.0 96.3 

 

Table 2. Completeness and correctness for the Marseille test 
area, depending on the update status. 

 

 Unchanged Demolished New 
(Matikainen et al., 2007) 
Completeness [%] 81.7 100 91.8 
Correctness [%] 100 22.6 100 
(Olsen and Knudsen, 2005) 
Completeness [%] 87.8 100 93.9 
Correctness [%] 100 30.4 82.1 
(Rottensteiner, 2008)  
Completeness [%] 95.9 100 87.8 
Correctness [%] 100 56.8 91.8 

 

Table 3. Completeness and correctness for the Lyngby test 
area, depending on the update status. 

 

 Unchanged Demolished New 
(Champion, 2007)  
Completeness [%] 82.8 100 75.0 
Correctness [%] 100 42.9 65.2 
(Rottensteiner, 2008) 
Completeness [%] 80.2 86.7 82.6 
Correctness [%] 97.9 36.1 59.4 

 

Table 4. Completeness and correctness for the Toulouse test 
area, depending on the update status. 

 
ranges from 18.4% with (Champion, 2007) to 23.7% with 
(Matikainen et al., 2007). The situation is a bit better for new 
buildings, with a correctness rate larger than 63% for all the 
methods and even rising to 96.8% with (Rottensteiner, 2008). In 
spite of such limitations, all the methods presented here are very 
efficient in classifying unchanged buildings, for which the 
completeness rates are higher than 93%, which indicates that a 
considerable amount of manual work is saved and also 

demonstrates the economical efficiency of these approaches in 
the context of aerial imagery. 
 
Analyzing Table 3 leads to similar conclusions for the LIDAR 
context. The correctness rate for the reported demolished 
buildings are again poor and only (Rottensteiner, 2008) 
achieves less than 50% false positives. However, the methods 
are very effective in detecting demolished buildings and achieve 
a completeness rate of 100% for this class. Compared to the 
outcomes obtained in Marseille, the main difference concerns 
the new buildings, which appear to be more difficult to extract. 
Thus, between 6.1% (Olsen and Knudsen, 2006) and 12.2% 
(Rottensteiner, 2008) of the new buildings are missed. If these 
percentages of missed new buildings can be tolerated, our tests 
indicate that LIDAR offers a high economical effectiveness and 
thus may be a viable basis for a future application. If these error 
rates for new buildings are unacceptable, manual post-process is 
required to find the missed buildings, at the expense of a lower 
economical efficiency.  
 
The situation is not quite as good with the satellite context 
(Table 4). The method by (Champion, 2007) is very effective in 
detecting demolished buildings (100%), but this is achieved at 
the expense of a low correctness rate (42.9%). The same 
analysis can be carried out with (Rottensteiner, 2008), but this 
method even misses quite a few demolished buildings. It has to 
be noted that, even though the completeness rates for 
unchanged buildings achieved by both methods are relatively 
low compared to those obtained in the Marseille and Lyngby 
test areas, they also indicate that even under challenging 
circumstances, 80% of unchanged buildings need not be 
investigated by an operator. The main limitation appears to be 
the detection of new buildings. As illustrated for an example in 
Figures 3e and 3f, 17.4% and 25% of new buildings are missed 
with (Rottensteiner, 2008) and (Champion, 2007) respectively, 
which is clearly not sufficient to provide a full update of the 
database and requires a manual intervention in order to find the 
remaining new buildings.   
 
In order to obtain deeper insights into the reasons for failure, in 
the subsequent sections we will focus our analysis on some 
factors that affect the change detection performance. 
 
4.2 Impact of the Size of a Change  

To analyse the performance of change detection as a function of 
the change size, we compute the completeness and correctness 
rates depending on this factor. For that purpose, new and 
demolished buildings are placed into bins representing classes  

 
(a) Matikainen et al. (2007) 

 
(b) Rottensteiner (2008) 

 
(c) Olsen and Knudsen (2005) 
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Figure 2. Completeness (diamonds) and correctness (squares) of the detection results as a function of the building size [m²]. 
 

of 20 m² in width. Note that the buildings from all the test areas 
for which results were submitted are combined in order to have 
a significant number of changes for each bin. The graphs for 
(Champion, 2007) and (Rottensteiner, 2008) also contain the 
results from the Toulouse area. The completeness and 
correctness rates, computed independently for each bin, are 
presented in Figure 2 and demonstrate the close relation 
between the quality of change detection and the change size. 
This is true for the completeness with (Champion, 2007) and 
(Rottensteiner, 2008), but it is even more obvious for the 
correctness in all three graphs. Correctness is particularly poor 
for buildings smaller than 100 m². Looking at these graphs it 
becomes obvious that the two major problems observed in 
Section 4.1, namely the potentially critical rate of missed new 
buildings, which limits the qualitative effectiveness of change 
detection, and the poor correctness for demolished buildings are 
caused by the same underlying phenomenon i.e. the fact that 
small objects cannot be detected reliably by an automated 
procedure. Attentive readers may also notice that a very low 
correctness occurs with (Matikainen et al., 2007) with buildings 
covering about 235m². It is caused by large ground areas in the 
Marseille test area that were mistakenly classified as above-
ground objects and then wrongly alerted as new buildings.  
 
4.3 Impact of the Quality of the Input Data  

Our experiments show that many FP cases are related to the 
quality of the input DSM. The correlation DSMs used in the 
imagery context contain a lot of erroneous height values, 
especially in shadow areas (where stereo-matching algorithms 
are known to have problems) that are almost systematically 
alerted as new buildings, as depicted in Figures 3a, 3b, 3c, and 
3d. These errors contribute to lower the correctness rate, 
especially for new buildings, which drops to 63.5% with 
(Champion, 2007) in Marseille. The high rate of 96.3% 
obtained here with (Rottensteiner, 2008) may be related to the 
use of the initial description of the database as a priori 
information for producing and improving the building label 
image. In Toulouse, FP new buildings were also related to DSM 
errors, caused by repeating patterns. Another problem concerns 
the quantisation effects i.e. the fact that the numerical resolution 
of height values in the correlation DSM is restricted to the 
GSD, which for instance prevents the use of surface roughness 
as an input parameter for the Dempster-Shafer fusion process in 
(Rottensteiner, 2008) and ultimately contributes to lower the 
correctness rate for demolished buildings.  
 
Regarding the Lyngby test area, it was a problem that the 
original data were not available. Single points inside water areas 
were not eliminated from the data, but used in an interpolation 
process based on a triangulation of the LIDAR points, 
producing essentially meaningless data in these water areas that 
for example caused FP new cases with (Olsen and Knudsen, 

2005). The other problem was that first pulse (rather than last 
pulse) data were provided, which caused FPs in areas with 
dense vegetation, e.g. along rivers with (Rottensteiner, 2008). 
Combined with a relatively low resolution (1 m), these 
problems contribute to lower the correctness of the systems.  
 
4.4 Impact of Other Topographic Objects in the Scene  

In our experiments, some confusion occurs between buildings 
and other above-ground objects that are present in the scene and 
wrongly alerted as new buildings. Again, this contributes to 
lower the correctness achieved for new buildings. The methods 
deal with this problem, but currently they only focus on one 
class of above-ground objects that is to be separated from 
buildings, namely trees. In general, these trees are identified 
with indicators based on the NDVI and then eliminated, as 
shown in Section 3. Even though this strategy appears to be 
efficient, our experiments show that such confusions are not 
limited to vegetation but concern other objects that not 
considered in the approaches presented in this study. For 
instance, bridges or elevated roads are highlighted as FP new 
buildings in the Lyngby test area by (Rottensteiner, 2008) and 
(Olsen and Knudsen, 2005), as shown in Figures 3g and 3h. To 
limit the impact of these problems, two strategies could be 
considered in the future. The first one consists in developing 
more sophisticated methods that are capable of simultaneously 
extracting multiple object classes such as buildings, roads, and 
vegetation. Such methods would need to incorporate complex 
scene models that also consider the mutual interactions of the 
object classes in a scene. They could make use of recent 
developments in the field of Computer Vision that are related to 
the modelling context in image classification (Kumar and 
Hebert, 2006). The second strategy consists in using additional 
information on other objects, e.g. by incorporating an existing 
road database in the building change detection procedure. 
 
Additional Remark: Beyond the statistical aspects, our 
experiments show that the errors generated by the change 
detection approaches are often identical. Thus, the FP cases that 
occur in the Marseille test area because of the DSM 
inaccuracies (Section 4.3) are both present in the outcomes of 
(Matikainen et al., 2007) and (Champion, 2007), as illustrated 
in Figures 3a and 3b respectively. Some of other errors shared 
at least by two approaches are also illustrated in Figure 3. 
 
 

5. CONCLUSION 

Four building change detection approaches have been tested in 
three different contexts. If the satellite context appears to be the 
most challenging for the current state-of-the-art, the aerial 
context and the LIDAR context appear to be a viable basis for 
building an operative system in the future. Thus, the high  

 
(a) Champion, 2007 

 
(b) Matikainen et al., 2007 

 
(c) Rottensteiner, 2008 
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Figure 3. Evaluation Details (same colour code as Figure 1). FP new cases related to DSM errors (shadow areas), in Marseille 
streets (a)-(b) and Toulouse (c)-(d); (e)-(f) FN new cases (small changes); (g)-(h) FP new buildings related to bridges. 

 
completeness rates for demolished buildings and the high 
correctness for unchanged buildings that could be achieved in 
these contexts highlight the effectiveness of the presented 
approaches in verifying the existing objects in the databases. 
The main limitation in terms of qualitative efficiency concerns 
the relatively high number of FN new buildings – up to 12.1% 
in the Marseille test area with (Rottensteiner, 2008) – that are 
mostly related to the object change size. The economical 
efficiency of the presented approaches seems to be promising, 
with 80-90% of the existing buildings requiring no further 
attention by the operator. These buildings are reported to be 
unchanged, which saves a considerable amount of manual 
work. In terms of the economical efficiency, the main limitation 
is a high number of FP demolished buildings that have to be 
inspected unnecessarily. Again, this is mainly caused by 
problems in detecting small changes. 
 
Areas of improvement should concern input data and 
methodologies. Thus, the resolution of LIDAR data 
(1 point / m²) used in this test appeared to be critical for the 
change detection performance: using higher density LIDAR 
data (e.g. 5-10 points / m²) should improve the situation. As far 
as methodology is concerned, new primitives should be used in 
the algorithms, in particular 3D primitives (representing e.g. the 
3D roof planes or building outlines) that can now be reliably 
reconstructed with the 3D acquisition capabilities, offered by 
recent airborne/spaceborne sensors. Another concern should be 
the improvement of the scene models used in object detection 
such that they can deal with different object classes and their 
mutual interactions. By incorporating different object classes 
and considering context in the extraction process, several object 
classes could be detected simultaneously, and the extraction 
accuracy of all interacting objects could be improved.  
 
In this project, we learned how difficult it is to compare 
approaches of very different designs. To carry out a fair test, we 
chose to use the building label images and to limit the type of 
changes to demolished and new buildings. In addition, we chose 
to compare the building label images to the initial vector 
database, basing on a coverage rate featured by the parameter 
Th. Further investigations are necessary to study the actual 
impact of this parameter on the completeness and correctness 
rates. However, if we are aware of these drawbacks, we think 
that this scheme was sufficient to bring out some interesting 
findings. We also hope that our results – in conjunction with 

those of e.g. the ARMURS3 project – will be helpful to create a 
nucleus of interested people, both in academia and private 
sector, and to speed up the progress in the vector change 
detection field.  
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ABSTRACT:

In this paper we present an alternative method for SAR image denoising, structure enhancement, and change detection based on the
curvelet transform. Curvelets can be denoted as a two dimensional further development of the well-known wavelets. The original image
is decomposed into linear ridge-like structures, that appear in different scales (longer or shorter structures), directions (orientation of the
structure) and locations. The influence of these single components on the original image is weighted by the corresponding coefficients.
By means of these coefficients one has direct access to the linear structures present in the image. To suppress noise in a given SAR
image weak structures indicated by low coefficients can be suppressed by setting the corresponding coefficients to zero. To enhance
structures only coefficients in the scale of interest are preserved and all others are set to zero. Two same-sized images assumed even
a change detection can be done in the curvelet coefficient domain. The curvelet coefficients of both images are differentiated and
manipulated in order to enhance strong and to suppress small scale (pixel-wise) changes. After the inverse curvelet transform the
resulting image contains only those structures, that have been chosen via the coefficient manipulation. Our approach is applied to
TerraSAR-X High Resolution Spotlight images of the city of Munich. The curvelet transform turns out to be a powerful tool for image
enhancement in fine-structured areas, whereas it fails in originally homogeneous areas like grassland. In the change detection context
this method is very sensitive towards changes in structures instead of single pixel or large area changes. Therefore, for purely urban
structures or construction sites this method provides excellent and robust results. While this approach runs without any interaction of
an operator, the interpretation of the detected changes requires still much knowledge about the underlying objects.

1 INTRODUCTION

Nowadays spaceborne SAR data is easily available. Thanks to
the high resolution of up to one meter (TerraSAR-X) it is suitable
for urban applications, e.g. urban growth modeling as well as for
damage mapping in conjunction with (natural) disasters. A main
problem for SAR image interpretation apart from the geometri-
cal aspect is the high noise level caused by the combination of
deterministic (speckle effect) and random noise. The reduction
of noise, e.g. by the multi-looking approach, often goes along
with a loss of resolution. While structure preserving filters do
not enhance fine-structured areas, smoothening filters even blur
the structures apparent in SAR data over urban areas. So reso-
lution and structure preserving filter algorithms are still a topic
of research. In this context alternative image representations like
wavelets have been applied. While wavelets are used to separate
point singularities (Candès and Donoho, 1999), second genera-
tion wavelets, e.g. curvelets, are more suitable for the extraction
of two dimensional features, as they are able to describe image
discontinuities along a smooth line (an edge) with a minimum
number of coefficients (Candès and Donoho, 1999). The ele-
mentary components are the so-called ridgelets – due to their
appearance like a ridge – that can have different scales (equiv-
alent to their length), directions and positions in the image. This
enables a selection of two dimensional features to be suppressed
(assumed noise) or to be emphasized (structure) by manipulating
the corresponding coefficient of each ridgelet. In the following a
short overview to related work especially to the development of
curvelets is given. Then, the curvelet representation is roughly
explained and three applications are presented: image denoising,
structure enhancement and change detection over the city center
of Munich (imaged by TerraSAR-X in the high resolution spot-
light mode and VV polarization). So this paper shows the poten-
tial of the curvelet transform for SAR image analysis.

2 RELATED WORK

The curvelet transform used in this approach has originally been
developed by (Candès and Donoho, 1999) to describe an object
with edges with a minimal number of coefficients in the contin-
uous space. Much research work was done to examine the be-
haviour of curvelets (Candès and Donoho, 2002a, Candès and
Demanet, 2002b, Candès and Guo, 2002), to transfer the def-
initions from the continuous to the discrete space (Candès and
Donoho, 2003a, Candès and Donoho, 2003b) and to accelerate
the computing time (Candès et al., 2005) so that digital image
processing becomes feasible. Many applications in different sci-
entific fields have been published so far, e.g. in geo- and as-
trophysics, that are summarized on the curvelet homepage (De-
manet, 2007).

Denoising of SAR images to simplify image analysis has also
been a research topic during the last years where many approaches
have been published. (Ali et al., 2007) proposed a combination of
a wavelet based multi-scale representation and some filters to im-
prove the results obtained by the ”standard” filtering techniques
like the Lee-filter. A bayesian-based method using ”a trous” filter
in the wavelet domain has been proposed by (Moghaddam et al.,
2004). Because of the properties of the wavelet transform, orig-
inally developed for one dimensional data, these two methods
are able to smooth regions and to suppress point-like noise, but
they do not take into account the two dimensional nature of im-
ages. The advantage of second generation wavelets for despeck-
ling has been examined by (Gleich et al., 2008) for the bandelet
and the contourlet transform. The application of curvelets on op-
tical and ultrasound images respectively in the medical context
has been published by (Ma et al., 2007). The only publication on
the use of curvelets in the remote sensing context by (Sveinsson
and Benediktsson, 2007) presents a denoising technique with a
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combination of wavelets and curvelets. A total variation based
segmentation algorithm divides the image in structured regions,
that are subsequently denoised by a curvelet-based method, and
homogeneous regions, denoised by a wavelet approach. For large
scenes with different land cover types, this method seems to be
very promising. As we concentrate on urban applications in this
paper, we use a purely curvelet-based approach.

Change detection in SAR images being a very difficult task has
often been discussed in literature. An overview to principal SAR
change detection methods, their advantages as well as their dis-
advantages can be found in (Polidori et al., 1995). Some more
specialized methods are touched in the following. The approach
of (Balz, 2004) uses a high resolution elevation model (e.g. ac-
quired by airborne laserscanning) to simulate a SAR image which
is subsequently compared to the real SAR data. The quality of the
results is naturally highly dependent on the resolution of the digi-
tal elevation model and its co-registration to the SAR image. This
nontrivial co-registration constraints this approach to small scale
exemplary applications. Another idea starting with the fusion of
several SAR images of different incidence angles to a ”superreso-
lution” image is presented by (Marcos et al., 2006) and (Romero
et al., 2006). Man-made objects, i.e. geometrical particularities
that are not captured by the digital terrain model used for the or-
thorectification of the SAR image, are classified by their diverse
appearance in the single orthorectified images due to the different
acquisition geometries. So, seasonal changes in natural surround-
ings can easily be distinguished from changes in built-up areas.
One disadvantage is the large number of different SAR images
of the same area needed to generate the ”superresolution” image.
(Wright et al., 2005) exploits the coherence (phase information)
of two SAR images, which implies a relatively short repeat-pass
time to avoid additional incoherence caused by natural surfaces.
(Derrode et al., 2003) and (Bouyahia et al., 2008) adopt a hidden
and a sliding hidden Markov chain model respectively to select
areas with changes in reflectivity even from images with differ-
ent incidence angles. Although this method allows to process
very large images and does not need additional parameter tun-
ing, except the window size, according to the authors still a lot of
research work has to be done to improve the preliminary results.

3 CURVELET REPRESENTATION

The curvelet representation consists of three components accord-
ing to (Candès and Donoho, 1999):

Figure 1: Ridgelet in spatial domain (Candès et al., 2005)

Ridgelets These two dimensional waveforms are the basic ele-
ments of the curvelet representation. In the spatial domain,
they appear like a ridge or a needle (see Fig. 1); in the
curvelet domain their contribution to the original image is

(a) Spatial domain

(b) Curvelet coefficients

Figure 2: City center of Munich, imaged by TerraSAR-X, High
Resolution Spotlight mode, Polarisation VV, Spatially Enhanced
Multi Look Ground Range Detected product

measured by a coefficient. The magnitudes of the ridgelets
extracted from Fig. 2(a) are depicted in Fig. 2(b) by gray-
values. Bright pixels mark high magnitudes. In contrast
to wavelets, curvelets are additionally defined by their ori-
entation in the two dimensional space (Ying et al., 2005).
Hence, this is a method of image analysis suitable for image
features with discontinuities across straight lines.

Multiscale ridgelets As the decomposition into ridgelets is de-
pendent on the scale, a pyramid of windowed ridgelets is
used, renormalized and transported to a wide range of scales
and locations. For example, a ridgelet on the finest scale
(N4-neighborhood) can only be horizontally or vertically
oriented, i.e. two different orientations, while a ridgelet on
the next coarser scale has already twice as much, i.e. four
different orientations. Consequently, the resolution in ori-
entation increases with coarser ridgelet scales. The number
of directions is given by the formula 2subband. For redun-
dancy reduction a wavelet decomposition is commonly used
on the finest scale, where only horizontal and vertical direc-
tions are discriminable anyway (Candès et al., 2005). The
different scales appear in Fig. 2(b) as single rings, whereas
the outer rings show the finer scales. The gaps between the
rings are just for visualization.
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Bandpass Filtering Before the computation of the ridgelets can
be done, the original image has to be separated out into a se-
ries of disjoint scales. This is done by a Laplacian pyramid
which implies a high redundancy in the order of multiply-
ing the original data volume by the factor 16 (Donoho and
Duncan, 2000). The interesting thing for images with edges
is, that most of these coefficients can be set to zero with-
out loosing any structures. So, data volume reduction gets
possible although the initial increase.

If one compares the original SAR image (Fig. 2(a)) to the coef-
ficients’ magnitudes (Fig. 2(b)) it is recognizable that the main
axes of the city center (a cross slightly rotated clockwise to the
vertical and the horizontal direction respectively) correspond in
their direction with accumulations of brighter points, i.e. with
higher coefficients, in the illustration of the curvelet representa-
tion. Now, the idea is to manipulate these coefficients to accent
certain structures by preserving the related coefficients or to sup-
press certain structures by removing the related coefficients be-
fore the inverse curvelet transform is done to get the enhanced
image in the spatial domain.

4 IMAGE ENHANCEMENT

The first application presented here is image enhancement by
simple noise suppression and structure extraction respectively.

4.1 Image denoising

Noise is commonly associated with insignificant curvelet coeffi-
cients, therefore a thresholding can set minor coefficients to zero.
One problem is that the number of coefficients preserved also
corresponds to the complexity of the scene, i.e. if the number of
coefficients preserved is defined as constant in advance the com-
plexity of all scenes is seen as equal. By contrast if a magnitude
threshold is chosen to exclude minor coefficients, the complexity
of the scenes may vary. But in this case the mean magnitude of
the coefficients, which is correlated with the contrast in the origi-
nal image, is misleadingly seen as constant. So, only structures of
a certain contrast would be extracted. Fig. 3(a) shows an exam-
ple where a magnitude threshold of 0.1 was applied, i.e. all lower
coefficients were set to zero. It is obvious that the main structures
are enhanced, but also many artifacts are produced, that constrain
the interpretation. Hence, the determination of a suitable thresh-
old is a difficult task.

4.2 Structure enhancement

Another possibility is to access the structures via their belong-
ing scale. The finest structures are gray value differences in a
N4-neighborhood. As this scale probably only contains noise, all
coefficients of this scale are set to zero. The coarsest scale influ-
ences the brightness of the image and should be kept unchanged.
The scales in-between gather the remaining structures according
to their length. So, it is possible to choose only those structures
of a certain length to be kept and to suppress all other structures
by setting the corresponding coefficients to zero. For example in
Fig. 3(b) only the structures of a length from 3 to 300 m are pre-
served to extract structures that presumably belong to buildings.
One can perceive that the main structures of the original image
(Fig. 2(a)) are strengthened and all clutter is removed. At first
glance the Touzi edge extractor (Fig. 3(c)) and the curvelet ap-
proach provide similar results. The lines extracted by the Touzi
operator (Touzi et al., 1988) are smoother and closed, but also
many lines inside the building blocks are displayed. The impor-
tant difference between the two approaches is that the curvelet

(a) Reconstructed ”denoised” image

(b) Structure reconstruction by curvelets

(c) Touzi edge extractor (r=4)

Figure 3: Denoising and structure extraction of Fig. 2(a)

approach only enhances the existing structures while the Touzi
extractor traces discontinuities in-between dark and bright struc-
tures. Hence, a single linear bright feature on a dark background
is strengthened by the curvelet approach, but it is split into two
edges by the Touzi extractor.
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5 CHANGE DETECTION

As mentioned before SAR images are highly affected by noise.
Although the influence of the deterministic speckle effect should
be exactly the same under the same conditions, it is impossible to
assure exactly the same conditions over a longer period of time.
So, if two SAR images are differentiated pixel by pixel the result
is expected to appear very noisy. Alternatively this differentiation
can be calculated in the curvelet coefficient domain. If the input
images are co-registered and same-sized, the images share also
the same combination of curvelet coefficients. Before the differ-
ence image is transformed back to the spatial domain, the coef-
ficient differences can be either denoised following Section 4 or
weighted quadratically. In the latter case each coefficient is multi-
plied by its own magnitude to suppress low and to strengthen high
coefficients. Additionally the influences of the different scales are
equalized by the factor 2subband (cf. Section 3). As the resulting
image contains positive as well as negative values, the positive
values showing regions that brightened up are coded in green and
the negative values showing regions that darkened are coded in
red. For TerraSAR-X data the geolocation of the detected data
product turned out to be sufficient for the change detection, so
that no further co-registration was necessary.

A disadvantage of this method might be its high demand on mem-
ory. The curvelet representation itself is very redundant increas-
ing the data volume of an image by the factor 16. Although most
coefficients are nearly zero or set to zero during the image en-
hancement process (cf. Section 4), but they have to be processed
during the differentiation as well. If more than three images are
compared the difference matrix including all relative differences
between the input images inflates. But the increasing number of
coefficients goes along with an increasing flexibility in approxi-
mating linear features in the input image. Tests with other second
order wavelets proved that critically sub-sampled approaches do
not provide comparable results. To get an impression of the pro-
cessing time: The example in Section 5.2 including three input
images of 2091x1113 pixels are processed with a Matlab imple-
mentation and require seven minutes on a Solaris workstation.

In the following two examples over the city of Munich are pre-
sented. The first one deals with short time changes in the well-
known fairground ”Theresienwiese”, the second one surveys con-
struction activities near the central station over the period of one
year. The processed data sets are acquired by TerraSAR-X in
the High Resolution Spotlight mode and delivered as Multi Look
Ground Range Detected product.

5.1 Short time changes

The two images of the fairground ”Theresienwiese” (Fig. 4(d))
have been acquired in December 2008 and January 2009. Being
processed as spatially enhanced product they have a pixel spac-
ing of 0.5 m on ground. Because of the relatively short time lag,
the reflectivity of the surrounding is expected to be the same, so
all changes should be man-made. Comparing visually the two in-
put images (Fig. 4(a) and 4(b)) one can remark a brighter area in
the upper middle of Fig. 4(a) that darkened in the second image
(Fig. 4(b)). Especially on the streets inside the fairground many
single pixel changes are obvious. For urban applications single
pixel changes do only disturb the interpretation as one is more
interested in changes happened to structures like streets or build-
ings. So, these single pixel changes have to be excluded. Spa-
tial averaging would help to find large areas with high changes,
but fine linear structures would be smeared over and probably
get lost. The curvelet approach is able to preserve the structures
while single pixel changes are suppressed. In Fig. 4(c) there

(a) SAR image 1 (b) SAR image 2

(c) Detected changes (d) Optical image c©GoogleEarth

Figure 4: Change detection in the fairground ”Theresienwiese”
(1: 05.12.2008, 2: 18.01.2009)

is one red region in the upper middle of the image, that accords
with the visual interpretation. These changes refer to the ”Winter-
Tollwood” festival that took place during the first acquisition. The
pavilions caused a much higher reflectivity than the bare soil dur-
ing the second acquisition. Additionally there are some small
red and green structures at the bottom left of Fig. 4(c) that were
not visible before. Those refer to buses and cars on a parking
lot. The slightly darkened region in the middle right of Fig. 4(a)
and 4(b) respectively is not marked as change because it does
not contain any structure. In summary, the change image shows
nearly no disturbances as all small scale changes are excluded.
The curvelet approach is very sensitive towards structures (e.g.
buses) and very robust towards slight large scale changes caused
by environmental influences.

5.2 Long time changes

For damage mapping after natural disasters it is only seldom pos-
sible to access up-to-date reference data, as most events cannot be
predicted yet. So, seasonal changes in the surrounding of the re-
gions of interest have to be taken into account. The three images
of the railway station ”Donnersberger Brücke” acquired in March
2008 (Fig. 5(b)), September 2008 (Fig. 5(c)), and March 2009
(Fig. 5(d)) are used to map the construction progress inside the
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(a) Optical image c©GoogleEarth (b) SAR image 1

(c) SAR image 2 (d) SAR image 3

Figure 5: Construction site near ”Donnersberger Brücke”
(1: 30.03.2008, 2: 22.09.2008, 3: 17.03.2009)

construction sites along the railway tracks where new residential
and office buildings are planned. As radiometrically enhanced
products they share a pixel spacing of 1.25 m on ground. The
color composite (Fig. 6(a), 1:R, 2:G, 3:B) shows many colored
regions, that help to identify the construction sites. But it is still
impossible to interpret these changes. Fig. 6(b) indicates the
detected changes by the curvelet approach. Many green struc-
tures stand for an increase in reflectivity over the period of one
year. A higher reflectivity refers to new objects, e.g. walls or
houses while the darkened regions (in red) usually refer to strong
scatterers that have disappeared, e.g. scaffoldings. At the bot-
tom left there are sequences of green and red lines which can be
interpreted as new buildings. One the one hand a new risen build-
ing causes a higher reflectivity (green), on the other hand it also
causes new radar shadows (red). Some long green or red lines
can be perceived in the middle of the image that refer to trains
in the railway depots. Having a look at Fig. 6(c) and 6(d) much
more small structures especially at the top right appear. Most of
these are marked in red in Fig. 6(c) and in green in Fig. 6(d), so
that they compensate each other over the whole year (Fig. 6(b)).

(a) Color composite (b) Detected changes 1 – 3

(c) Detected changes 1 – 2 (d) Detected changes 2 – 3

Figure 6: Change detection (cf. Fig. 5)

These changes are mainly found in the ”Hirschgarten” park (see
Fig. 5(a) at the top right) comparing the images acquired in spring
with those acquired in fall. As these changes are restricted to nat-
ural surroundings, they supposedly refer to seasonal changes in
the reflectivity by the tree’s growth. The blank branches in March
cause a much higher reflectivity in the co-polarized channel than
the leaves in September. Again the curvelet approach produces a
change image with no single pixel disturbances. Changes in the
underlying structures are emphasized. Unfortunately it is a diffi-
cult task to distinguish man-made changes from seasonal changes
in the natural surrounding without a high resolution land cover
mask.

6 CONCLUSION

A new approach for SAR image enhancement and change de-
tection based on the curvelet transform has been proposed and
applied to TerraSAR-X data of the city center of Munich. As in-
put data any amplitude image can be used, for change detection
two equally sized and co-registered images are necessary. Radar

155

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



inherent noise is reduced and underlying structures are enhanced
depending on their length, their orientation or their intensity.

In the image enhancement context this approach is most suitable
for fine-structured areas, e.g. city centers. The main problem
lies in the determination of thresholds for suppression and em-
phasis of structures. The determination of the threshold and the
number of coefficients respectively is still experiential and highly
dependent on the image content. If the scenes are reconstructed
by a fix number of coefficients, the complexity of the scene is
restricted. As the image description by the curvelet coefficients
is purely based on structures, by omitting coefficients originally
smooth areas are often affected by artifacts. At the moment the
quadratic weighting of the single curvelet coefficients seems to
be the best solution for fully automatic processing chains.

The change detection approach provides excellent results in ur-
ban areas. The great advantage over pixel based methods is the
sensitivity towards changes in structures and the possibility to
predefine the scale and the strength of changes to be mapped.
Problems occur in natural surroundings like forested areas, where
the status of the foliage has an important seasonal impact on the
backscattering behavior. Not to mention the weather conditions,
snow cover with different moistures can highly modify the ap-
pearance in a SAR image. In consequence of that the interpre-
tation of the detected changes is very challenging. Although the
change images contain clear structures without any disturbances,
it is nearly impossible to distinguish man-made from natural, e.g.
seasonal, changes, without a priori knowledge about the land
cover.

As the present results proved that two single polarized SAR im-
ages can be used to indicate changes happened to the imaged
area, but they do not provide the information needed to interpret
these changes, our future research will try to include other data
sources into the processing chain. To discriminate natural cover
from man-made objects, a coherence layer, that exploits the phase
information of the input images could be helpful. Polarimetric
layers could facilitate the interpretation by attaching information
about the scattering types to the detected changes. Apart from
remote sensing data it is quite conceivable to introduce a priori
knowledge by overlaying the change layer with land cover classi-
fications from optical data sources as well as with cadastral data
sets.
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ABSTRACT: 
 
An inherent drawback of SAR imaging of complex 3D structures is the potential layover of more than one scatterer in one resolution 
cell. Such scatterers can be separated by tomographic processing of multiple SAR images acquired with different across-track 
baselines. Simulation tools may further support interpretation of such layover effects appearing in multi-body urban scenes. In this 
paper, an existing 2D simulation approach, developed for separating different kinds of reflection effects in the azimuth-range plane, 
is enhanced by including the elevation direction as third dimension and thus enabling the comparison of the SAR simulation results 
with 3D imaging techniques such as tomography. After introducing the simulation concept, tools for three-dimensional analysis of 
scattering effects are presented. Finally, simulated data are compared with real elevation data extracted from TerraSAR-X images 
for showing potential fields of application. 
 
 

1. INTRODUCTION 

High resolution SAR sensors like TerraSAR-X or Cosmo-
SkyMed provide SAR images having a resolution of below one 
meter in spotlight mode. While in SAR images of coarse 
resolution several dominant scatterers from man-made objects 
at slightly different ranges may be condensed into a single 
pixel, these will be separable in high resolution images. Hence, 
more image features can be distinguished due to an increased 
number of deterministic effects and due to an increased signal 
to clutter ratio for dominant scatterers (Adam et al., 2008).  
However, visual interpretation of image features in high 
resolution SAR images remains challenging due to range 
dependent geometrical effects. SAR maps the 3D world 
basically into a cylindrical coordinate system, where range and 
azimuth are the image coordinates and elevation is the 
coordinate, along which all scattering contributions are 
integrated, i.e. all scatterers are mapped into the same resolution 
cell in the azimuth-range plane if they have the same spatial 
distance with respect to the SAR sensor. Access to the third 
coordinate, elevation, is achieved by multi-baseline methods, 
like Persistent Scatterer Interferometry (Ferretti et al., 2001; 
Kampes, 2006) or SAR tomography (Reigber & Moreira, 2000; 
Fornaro et al, 2003; Zhu et al., 2008). 
Simulation of scattering effects for urban areas may support 
visual interpretation of high resolution SAR images. In this 
context, Franceschetti and co-workers (Franceschetti et al., 
1995) distinguish between two different kinds of SAR 
simulators: image simulators and SAR raw data simulators. In 
the past, different concepts have been presented for simulating 
artificial SAR images for urban areas (Balz, 2006; Mametsa et 
al., 2001) and for simulating SAR raw data by illuminating 
simplified building models (Franceschetti et al., 2003).  

The simulator presented in this paper applies ray tracing 
algorithms and has been developed for simulating artificial 
SAR reflectivity maps (Auer et al., 2008). The approach is 
focused on geometrical correctness while physical effects and 
speckle effects are neglected. In addition to a reflectivity map 
containing all backscattered intensities, reflection effects are 
assigned to different image layers based on available bounce 
level information, i.e. separate layers for single bounce, double 
bounce, etc. Hence, interpretation of deterministic reflection 
phenomena appearing at man-made objects is simplified.  
So far, for providing image data in azimuth and range, two out 
of three dimensions of the imaging system have been exploited. 
The novelty of the presented approach compared to other 
simulation concepts relates to the fact that the complete 3D 
geometry of the SAR imaging process is simulated and stored. 
This enables one, based on the simulated 2D SAR, to retrieve 
information about the existence of multiple scatterers in one 
resolution cell in the SAR image. We show that simulation of 
the distribution of point scatterers in elevation direction may 
support the interpretation of estimated elevation coordinates 
derived by SAR Tomography. 
The structure of the paper is organized as follows. Firstly, the 
basic simulation concept is introduced in Section 2 where four 
major parts of the simulation concept are explained including 
necessary developments for extraction and analysis of elevation 
data. Simulation results displaying elevation data are compared 
with real data extracted from a TerraSAR-X image in Section 3. 
Finally, in Section 4, a short summary is given and future work 
is addressed. 
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2. SIMULATION CONCEPT 

The simulation approach presented in this paper is based on ray 
tracing algorithms provided by POV Ray (Persistence of Vision 
Ray Tracer), a free-ware ray tracing software. Main advantages 
of POV Ray are free access to its source code, optimized 
processing time, separability of multiple reflections and existing 
interfaces to common 3D model formats. In order to provide 
necessary output data for two-dimensional analysis of reflection 
phenomena, additional parts have been included to POV Ray’s 
source code. The simulation concept consists of four major 
parts:  

 Modeling of scene objects (Section 2.1) 
 Sampling of the 3D model scene in POV Ray 

(Section 2.2) 
 Creation of reflectivity maps (Section 2.3) 
 3D analysis of reflection effects by means of output 

data provided by POV Ray (Section 2.4) 
 
In the following subsections, the processing chain will be 
explained in more detail. 
 

 
Figure 1: Approximation of SAR system by a cylindrical light 

source and an orthographic camera; 3D sampling due 
to coordinates in azimuth, slant-range, and elevation 

 
2.1 Modeling of scene objects 

First, the 3D scene to be illuminated by the virtual SAR sensor 
has to be described in the modeling step. 3D models can be 
designed in POV Ray or can be imported into the POV Ray 
environment. Then, parameters are adapted for describing the 
reflection behavior at object surfaces. To this end, POV Ray 
offers parametric models for specular reflection and diffuse 
reflection. A reflectivity factor for each surface defines the loss 
of intensity affecting rays specularly reflected at object 
surfaces.  
In the case of a modeled SAR system both the light source and 
the camera are located at the same position in space. The 
concept for approximating the imaging geometry of the SAR 
system is shown in Figure 1. Focusing effects due to SAR 
processing in azimuth and range are considered by using a 
cylindrical light source and an orthographic camera whose 
image plane is hit perpendicularly by incoming signals. 
 
2.2 Sampling of the 3D model scene 

For analyzing backscattered signals within the modeled 3D 
scene, rays are followed in reverse direction starting at the 
center of an image pixel and ending at the ray’s origin at the 
light source (Whitted, 1980). This concept is commonly 
referred to as Backwards Ray Tracing (Glassner, 2002). Since 
ray tracing is performed for each pixel of the image plane, 
output data for creating reflectivity maps is derived by discrete 

sampling of the three-dimensional object scene (Auer et al., 
2008).  
Coordinates in azimuth and range are derived by using depth 
information in slant-range provided during the sampling step. 
For instance, according to Figure 1, focused azimuth 

coordinates fa  and slant-range coordinates fr  of double 

bounce contributions are calculated by: 
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where  , = azimuth coordinates of the ray’s origin and 

the ray’s destination at the image plane 
0a pa

1r , ,  = depth values derived while tracing the 

ray through the 3D model scene 
2r 3r

 
So far, only two axes of the three-dimensional imaging system - 
azimuth and range - have been used for reflection analysis 
(Auer et al., 2008). However, the third dimension, elevation, 
may provide potential to enhance the simulators capacities to 
3D analysis of reflection effects. To this end, extraction of 
elevation data has been added to the sampling step. According 
to the imaging concept shown in Figure 1, the elevation 
coordinate for a double bounce contribution is derived by 
means of the following equation: 
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where  , = elevation coordinates of the ray’s origin and 

the ray’s destination at the image plane 
0e pe

 
At this point, elevation data derived during the sampling step 
shall be discussed in more detail. Due to Eq. (3) and the discrete 
sampling of the scene, all backscattering objects are assumed to 
behave as point scatterers. Resolution in elevation is not 
affected by limits occurring due to the size of sampling 
intervals along the elevation direction or the length of the 
elevation aperture (Nannini et al., 2008). From a physical point 
of view, deriving discrete points directly in elevation direction 
may be a disadvantage since comparison of the processed 
reflectivity function with a simulated one could be a desirable 
task. For instance, in the case of single bounce, the discrete 
concept will not be able to represent a planar surface 
continuously but only by discrete points.  
For layover caused by multiple reflections along the elevation 
direction the discrete simulation concept is nonetheless 
reasonable since approaches for tomographic analysis also seek 
for scatterers whose backscattered intensity is concentrated in 
individual points along the elevation direction. Concentration 
on scene and SAR geometry and thereby neglecting the 
physical characteristics provides some advantages, though, to 
overcome well known limitations of tomographic analysis (Zhu 
et al., 2008). For instance, it leads to a better understanding of 
the SAR geometry in the elevation direction by means of 
simulating the reflectivity slice which is helpful for 3D 
reconstruction. Additionally, it has the potential to provide the 
number of scatterers in a cell as a priori for parametric 
tomographic estimators if the scene geometry is available at a 
very detailed level, e.g. based on airborne LIDAR surface 
models.  
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Eventually, the simulation process provides the following 
output data for each reflection contribution detected in the 3D 
object scene: 

 coordinates in azimuth, slant range, and elevation 
[units: meter] 

 intensity data [dimensionless value between 0 and 1] 
 bounce level information for every reflection 

contribution [1 for single bounce, 2 for double 
bounce, etc.] 

 flags marking specular reflection effects [value 0 or 
1] 

 

 
Figure 2: left: Simulation using box model having a size of 20 

m x 20 m x 20 m, line of sight indicated by arrow; 
right: simulated reflectivity map simulated (slant-
range indicated by arrow) 

 

 

 
Figure 3: simulation using step model (left), line of sight 

indicated by arrow; simulated reflectivity map (right), 
slant-range indicated by arrow 

 
2.3 Reflectivity maps in azimuth and slant range 

Firstly, all reflection contributions are mapped into the azimuth 
– slant range plane. Afterwards, a regular grid is imposed onto 
the plane and intensity contributions are summed up for each 
image pixel. Figure 2 shows the resulting reflectivity map for a 
cube (dimensions: 20 m x 20 m x 20 m) which has been 
illuminated by the virtual SAR sensor using an incidence angle 
of 45 degrees. The size of one resolution cell has been fixed to 
cover 0.5 m x 0.5 m in azimuth and slant range. Surface 
parameters are chosen in a way that box surfaces can be clearly 
distinguished from ground parts, i.e. in the current example box 
surfaces show stronger diffuse backscattering than the 
surrounding ground. Following top-down in ground range 

direction, diffuse single bounce contributions of the ground are 
visible followed by a layover area of ground, wall of the box 
and top of the box. At the end of the layover area, a strong 
double bounce line is visible which is caused by the interaction 
between the front wall and the ground in front of the box. 
For this type of scene geometry, a 2D simulation and analysis is 
usually sufficient. The next section will however illustrate 
examples that underline the necessity of including the elevation 
direction as third dimension into the simulation. 
 

  
Figure 4: selection of pixel for elevation analysis (left); 

definition of three slices (right) in slant-range (1), 
azimuth (2), and elevation direction (3) 

 
2.4 3D analysis of scattering effects 

Figure 3 shows a reflectivity map simulated by illuminating a 
step model (width: 10 m, length 20 m, height 20 m). For 
providing the map, the same imaging geometry has been chosen 
as for the box example, i.e. the step was oriented in direction to 
the sensor and the incidence angle was fixed to 45 degrees in 
order to obtain specific overlay effects for single and double 
bounce contributions which are explained in the following. 
Compared to the reflectivity map containing the box model 
(Figure 2), the reflectivity map of the step shows similar 
characteristics. Both the layover area of single bounce 
contributions and the location of focused double bounce 
contributions are identical. Only the size of the shadow zone 
indicates a height difference between the illuminated objects. In 
the case of the step model, separation of dihedrals – two right 
angles at the steps – is impossible in the reflectivity map since 
all double bounce effects are condensed in one single line.  
Hence, separation of scattering effects in elevation direction 
may be helpful since it enables to resolve layover effects for the 
purpose of distinguishing several scatterers within one 
resolution cell. To this end, an interactive click-tool has been 
included into the simulator for defining two-dimensional slices 
to be analyzed. In the case of the given reflectivity map for the 
step model, one pixel is selected, e.g. located in the double 
bounce area as shown in Figure 4. Based on the coordinates of 
the pixel center, three slices are defined: 

 slice no. 1 for displaying elevation data in slant-range 
direction 

 slice no. 2 for displaying elevation data in azimuth 
direction 
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 slice no. 3 for displaying intensities in elevation 
direction 

 
According to the defined slices, necessary data in slant-range, 
azimuth and elevation are extracted out of the data pool 
provided by the sampling process in POV Ray.  
 

 
Figure 5: Slice 1: elevation heights in slant-range direction 

(slice 1 in Figure 4 corresponds to slant range interval 
60 m to 140 m); blue: single bounce contributions, 
green: double bounce contributions 

 

 
Figure 6: Slice 2: elevation information along azimuth direction 

displayed in height over ground; blue: single bounce 
contributions, green: double bounce contributions; 
zero level = level of ground surrounding the step 

 
Since the incidence angle used for sampling the 3D model 
scene is known, slice no. 1 pointing in slant range direction can 
be presented by two versions, either by displaying elevation 
heights (Figure 5), i.e. elevation coordinates with respect to a 
master height situated in the center of the image plane used for 
sampling the scene, or by providing height information in 
height over ground geometry, i.e. heights with respect to the 
ground surrounding the box. 
Following the slant-range direction from left to right, displaying 
height data in elevation heights enables to distinguish between 
range intervals containing one scatterer and areas containing 
several scatterers resulting in layover effects, which can not be 
separated in reflectivity maps such as shown in Fig. 3 (right). In 
Figure 5, reflection caused by direct backscattering are colored 
in blue color while double bounce contributions are indicated 
by green spots. Due to the incidence angle of 45 degrees, 
double bounce effects are focused at the same position in slant-
range and are overlaid by both single bounce contributions at 

the ground and single bounce contributions reflected at the end 
of the step up-side.  
Following slice no. 2 along its way, elevation information is 
shown along the azimuth direction in height over ground 
(Figure 6). After passing an interval of contributions directly 
backscattered at the ground, the layover region starts showing 
the width of the double bounce areas in azimuth, which are 
equal to the width of the step model. As expected, double 
bounce contributions caused by the interaction between 
perpendicular faces are concentrated at the corresponding 
intersection lines and, hence, show a height value of 0 and 20 
meters, respectively. 
 

 
Figure 7: Slice 3: normalized intensities along elevation 

direction; step width in elevation: 2 meters; blue: 
single bounce contributions, green: double bounce 
contribution 

 
Slice no. 3 pointing in elevation direction is shown in Figure 7. 
After the spatial sampling along elevation direction is chosen 
by the operator, intensity contributions are assigned to elevation 
intervals and summed up. Since the selected pixel is located 
within the double bounce area of two dihedrals, slice no. 3 
shows two strong double bounce contributions caused by the 
interaction of step faces (colored in green) accompanied by 
weak direct backscattering derived at the step faces (colored in 
blue). Although the radiometric quality of detected intensity 
contributions is moderate due to simplified reflection models 
and the approximation of SAR signals by rays, proportions 
between single and double bounce intensities within one 
resolution cell are well represented.  
In the following Section, simulation results will be compared to 
real data derived by tomographic analysis. 
 

3. COMPARISON: SIMULATION VS. REAL DATA 

For demonstrating potential applications of SAR simulation in 
elevation dimension, a practical example extracted from 
tomographic analysis using TerraSAR-X high resolution 
spotlight data is provided in this section and compared to 
simulation results. 
 
3.1  Object modelling 

Fig.8 shows the 2D intensity map for the convention center of 
Las Vegas acquired by TerraSAR-X. For the purpose of this 
paper, an azimuth-range pixel marked by a green dot has been 
taken as example. The complex valued measurement at this 
pixel corresponds to the integration of the reflected radar signal 
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along the elevation direction. It is located at the layover area. 
Fig.9 gives a closer look to the ground truth at that area. The 
left image shows the convention center visualized in Google 
Earth in which the pixel of interest is included in the area 
marked by a red block. The right image tells that the returns 
from the roof of the convention center and from the plaza near 
ground mainly contribute to the measurement of this pixel. 
 

 
Figure 8: TerraSAR-X intensity image of convention center, 

Las Vegas; selected pixel marked by green spot 
 

      
Figure 9: corresponding aerial image, © Google Earth 

 

 

Figure 10: Model of the ground truth for the pixel of interest 

For simulation, we simplify the ground truth to the following 
model as depicted in Fig. 10. The incidence angle for the 
acquisition is adapted to the real SAR acquisition and, hence, is 
31.8 degrees. The taller building refers to the convention center 
which has a height of about 24m, while the lower building 
stands for the plaza near ground. Heights are measured over 
ground. The measurement for the pixel of interest refers to the 
integral of the returns from the objects included in the strip 
highlighted in blue color. For simulation purposes, two box 
models are used for modeling both the plaza and the convention 
center (Figure 11). The roughness of the plaza’s surface is 

assumed to be slightly higher than the roughness of walls and 
roof parts of the convention center. 

3.2 Simulation vs. real data 

The reflectivity profile of the resolution cell along elevation 
direction is derived using the simulation concept described in 
Section 2. Pixel selection is adapted to extracted real data as 
shown in Figure 8. Afterwards, the resulting slice in elevation is 
displayed in height over ground geometry (Figure 12). Heights 
of reflecting objects are reliably extracted as two single bounce 
contributions at heights of 3 and 24 meters.  

 

 
Figure 11: 3D model scene containing two boxes for 

approximating layover effect (flat box: 20 m x 30 m x 
3 m; tall box: 15 m x 15 m x 24 m); diffuse 
backscattering behaviour at all box surfaces 

 

 
Figure 12: discrete elevation coordinates for backscattering 

objects; step-width in elevation: 1 meter 
 
Fig. 13 shows the result of tomographic analysis for the 
corresponding position in real TerraSAR-X data. The reflection 
profile has been calculated with the approach described in (Zhu 
et al., 2008). As input data, 16 TerraSAR-X spotlight images 
with an across-track baseline range of 270m have been used. 
The peaks in reflection profile show nice correspondence with 
the simulated results, which underlines the accurate geometric 
properties of the simulation. However, it has to be noted that 
accurate estimation of intensity proportions is not possible as 
ground truth for surface properties was not available. At this 
point, simulated intensity values only indicate a stronger diffuse 
backscattering from the plaza which is also visible in the 
reflectivity map extracted from real SAR data. Enhanced 
information about the scattering behaviour of the plaza and the 
convention center may enable better simulation results in the 
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future. To not only compare the position of the peaks but also 
the shape of the reflection profile, the elevations of the 
simulated point scatterers (see Fig.12) were fed into the 
tomographic analysis assuming the same imaging configuration 
as for the real TerraSAR-X data. As can be seen from Fig. 14, 
the profile matches very well with the tomographic results from 
real data (Fig. 13). This example provides a validation of the 
SAR simulator in the third dimension by comparing to the 
tomographic analysis result using the TerraSAR-X data. In a 
further step, it can also be used for validation of tomographic 
algorithms by simulating the complex valued measurements of 
a data stack with different baseline distributions. 
 

 
Figure 13: reflectivity function extracted from TerraSAR-X 

data by SAR-Tomography; intensity peaks estimated 
at heights of 3 m and 22.5 m 

 

 
Figure 14: reflectivity function estimated from simulated data 

extracted from simulator by SAR-Tomography. 
 

4. SUMMARY AND OUTLOOK 

In this paper, a concept and its prototype implementation for 3D 
analysis of reflection effects has been presented. 3D model 
scenes are sampled by ray tracing techniques for providing 
necessary output data in azimuth, slant-range and elevation. 
Elevation slices are determined by pixel selection in reflectivity 
maps in the azimuth-range plane. Comparison of simulated data 
with real SAR data for a selected urban scene provided 
promising results. Further studies will have to show whether 
simulated elevation data may also support the geometrical 

analysis of more complex 3D urban scenes since visual 
interpretation of the simulation results is expected to become 
more complicated due to the increased number of visible 
building features. Meanwhile, the SAR estimator will be 
extended for the purpose of validation of tomographic 
algorithms. 
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ABSTRACT: 

The great potential of space-borne SAR images for semi- or fully-automatic mapping of topographic features has been shown by 

many approaches. While most of them focus on 2D mapping of topographic features, some preliminary research on the complex task 

of automatic delineation of 3D information in urban environments has been initiated in recent years. In this paper, we analyze the 

capabilities of new space-borne interferometric SAR missions – in particular the German TanDEM-X mission – with respect to their 

potential of deriving building heights. To this end, we summarize the mathematical framework and carry out a thorough analytical 

accuracy analysis involving various sensor and scene parameters.  

 

 

1. INTRODUCTION 

The new class of space-borne high resolution SAR sensors such 

as TerraSAR-X, SAR-Lupe or Cosmo-SkyMed is able to 

provide SAR images of 1-3m spatial resolution or even below 

in special spotlight modes. Naturally, the development of 

methods to automatically derive detailed cartographic 

information from this kind of data is a major issue driven by 

these missions. Since SAR is largely independent from 

illumination and weather conditions, it is furthermore an 

attractive imaging technology for acquiring area-wide 

information of regions hit by disasters such as floodings, 

landslides, or earthquakes. 

 

The great potential of space-borne SAR images for semi- or 

fully-automatic mapping of 2D topographic features has been 

shown by many encouraging approaches, e.g., (Negri et al., 

2006; Frey & Butenuth, 2009) for delineation of roads and 

(Jäger et al. 2007; Hänsch & Hellwich, 2008) for classification 

of agricultural features, just to name few recent ones. The 

derivation of 3D features is however more difficult, since these 

current civilian space-borne systems have only limited 

interferometric capabilities. While the acquisition of along-track 

interferometric image pairs is possible by programming special 

RADAR imaging modes (e.g. DRA mode or Aperture 

Switching mode for TerraSAR-X (Runge et al., 2006)) enabling 

the detection of moving objects (Suchandt et al., 2008; Weihing 

et al., 2008), none of the current civilian space systems is 

equipped with an across-track interferometer, which would 

provide the basis for deriving topographic heights (Bamler & 

Hartl, 1998; Cumming & Wong, 2005). The necessary across-

track baseline is only given when forming an interferogram of 

two SAR acquisitions taken from the same orbit yet at different 

passes of the satellite, and thereby relying on the positional 

variation of the orbits. It is clear that the resulting 

interferograms suffer from decorrelation depending on temporal 

variability of the objects under investigation.  

 

This situation will change once TerraSAR-X will be 

accompaigned by a second, quasi-identical SAR satellite in late 

2009, leading to the TanDEM-X mission. Both satellites will fly 

almost in parallel forming a helix-like orbit pair (Zink et al. 

2006). This configuration allows to acquiring SAR image pairs 

with variable across-track geometry resulting in a significantly 

improved interferometric coherence. The great benefit of single-

pass across-track SAR interferometers has been intensively 

studied in the context of the Shuttle Radar Topography Mission 

(SRTM). Despite of the limited spatial resolution of SRTM data 

(approx. 25m), it was possible to compute a global digital 

elevation model with standardized height accuracy of few 

meters, see, e.g., the comprehensive overview given in (Rabus 

et al., 2003).  

 

TanDEM-X will deliver high coherence interferometric data of 

the meter class. Although the mission is mainly designed to 

generate accurate digital elevation models satisfying HRTI-3  

standards (Zink et al., 2006), it can be expected that this kind of 

data opens up a much wider field for specialized methods for 

3D mapping of topographic features. The automated derivation 

of building heights or even the detailed reconstruction of 

buildings is certainly an important application amongst these.  

 

Apart from the improved spatial resolution, a major difference 

between TanDEM-X and SRTM is the variable across-track 

baseline of TanDEM-X, whereas the baseline of SRTM was 

held quasi-constant due to the second antenna mounted at a 

60m boom (and neglecting periodic baseline variations as 

consequence of thrusting). Hence, a thorough analysis of 

accuracy aspects of height estimation under the given flexibility 

of TanDEM-X is a key issue.  

 

Following questions should be answered by the analysis: 

 

- Which accuracy level in terms of building height 

estimation can be reached with interferometric data as 

it will be provided by TanDEM-X? 

- Is this accuracy sufficient to derive object specific 

information for rapid mapping in the context of crisis 

management? Such information may comprise, e.g., 

o the number of floors to estimate the amount 

of people living in a house 

o attached building parts of different height 

o the roof type (flat roof, saddle roof, etc.) 

- How would the accuracy improve, if external data 

from GIS is included (e.g. digital building footprints)?  
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The reminder of this paper is organized as follows: Section 2 

gives a brief review of state-of-the-art methods for delineating 

the 3D geometry of buildings from SAR images in general, 

eventually leading to a discussion of the boundary conditions of 

this study. The theoretical background for height estimation 

from across-track interferometry as well as error sources are 

compiled in Section 3, before Section 4 analyses the accuracy 

potential of deriving building heights under various given 

prerequisites. Finally, Section 5 draws conclusions in the light 

of the TanDEM-X mission and the results of this study. 

 

 

2. 3D BUILDING GEOMETRY FROM SAR IMAGES  

2.1. Overview 

 

Over the past decades, a large variety of approaches for deriving 

3D building information from SAR images has been developed. 

According to underlying methods and used data the different 

methods can be roughly grouped into following categories: 

 

(a) height-from-shadow using mono- or multi-aspect data 

(b) fitting prismatic models based on statistical optimization  

(c) model-driven segmentation of pre-computed height data 

(d) height estimation supported by feature detection / matching 

(e) Exploiting layover areas in single or multiple InSAR pairs 

 

To keep the overview focused, we only refer to the original 

work of each of these groups. We are aware that numerous 

approaches have been developed meanwhile, which could be 

assigned to one or more of these groups. 

 

Ad a) Due to the oblique imaging geometry of SAR systems, 

buildings cause the well-known RADAR shadow, which 

basically corresponds to the occluded area at ground. As for 

conventional optical shape-from-shadow approaches, it only 

needs simple trigonometry to calculate the object height from 

the shadow boundary when knowing the sensor imaging 

geometry and assuming horizontal ground (similar for the 

layover area (Tupin, 2003)). A compilation of the 

corresponding formulae can be found, for instance, in (Sörgel et 

al. 2006). It is usually assumed that a shadow edge corresponds 

to a certain object edge, whose height is to be estimated. As 

only a few number of building edges can be matched to shadow 

edges for a specific viewing direction of the SAR, (Bolter & 

Leberl, 2000; Leberl & Bolter, 2001) generalize this approach 

to multi-aspect SAR and embed it into an iterative height 

estimation framework supported by InSAR cues. By this, 

building footprint and height are estimated simultaneously, 

yielding an accuracy of 1.5m – 2m for airborne SAR. 

 

Ad b) The concept described in (Quartulli & Datcu, 2001; 

2003) models the geometry of buildings and geometric relations 

between adjacent buildings by a number of parameters 

(position, length, width, height, roof slope, distance etc.). After 

initialization of model instances in image space, the parameters 

are statistically optimized using amplitude, coherence and 

interferometric phase information from the images. While this 

kind of thorough object-oriented modeling helps to cope with 

heavy noise and image derogations, it limits the approach to a 

small number of building shapes, not speak about the 

computational complexity mandatory for parameter 

optimization. This might one of the reasons why the results 

cannot prove the general feasibility of the approach and no 

accuracy analysis has been carried out; whereas, the 

mathematical formulation is very elegant. 

Ad c) A purely data-driven strategy that complements the 

aforementioned approach is presented in (Gamba & 

Houshmand, 1999; Gamba et al., 2000). The procedure starts 

with the computation of the interferogram and derives level 

lines by segmenting it into height intervals. Level lines fulfilling 

certain shape constraints are selected as seed points to start a 

regiongrowing algorithm. This algorithm continues as long as 

segments can be added without exceeding a predefined 

threshold for co-planarity. The achieved accuracy using 

airborne C-band data is reported to be 2.5m for large industrial 

buildings. This method is in principle independent of the data 

source and can be applied to any kind of height models, as so 

for LIDAR-based height models (Gamba & Houshmand, 2000).  

 

Ad d) While the former extraction strategy infers the semantics 

of buildings purely based on the roof geometry, approaches 

following the spirit of (Sörgel et al., 2003; Tison et al., 2007) 

include hypotheses of buildings, building parts, and/or adjacent 

context objects (roads, vegetation, etc.) from the very beginning 

of processing. To this end, a supervised classification and/or 

feature detection is carried out before building reconstruction. 

This may contain areal objects but also linear features and spots 

indicating double bounces at building walls, which become 

especially prominent in high resolution SAR (Stilla, 2007). The 

cues provided by these hypotheses are then iteratively grouped 

and optimized together with the heights derived from InSAR 

data until reasonably shaped buildings are extracted or 

hypotheses are rejected. Due to generic processing of multiple 

cues, this concept is easily extended to multi-aspect SAR data. 

The reported accuracy yields again 2 – 3m for the airborne case. 

   

Ad e) The final group of approaches does not only include 

image features derived from SAR or InSAR data but models the 

complete interferometric phase profile for building walls and 

roofs (Thiele et al., 2007). Since vertical walls form layover 

areas as consequence of the oblique RADAR distance 

measurement, this kind of modelling implicitly contains the 

assumption that the main contribution of scattering in such 

layover areas is induced by building walls and not by clutter in 

front of the building or by the overlayed part of the roof. This 

approach can be generalized to SAR tomography (Reigber & 

Moreira, 2000; Fornaro et al., 2003) if more than one 

interferometric pair of the same viewing direction is available. 

(Zhu et al., 2008; 2009) show that deriving 3D information via 

tomographic analysis and statistical model selection can be 

adapted to pixelwise calculation of dense height maps of urban 

areas, thus linking the concepts of SAR tomography with 

Persistent Scatterer Interferometry (Ferretti et al., 2001; 

Kampes, 2006). These approaches are however in a preliminary 

stage so that a thorough accuracy analysis is not yet available. 

 

2.2 Discussion  

 

While each of the approaches is characterized by individual 

advantages and limitations, the latter category seems to be a 

good compromise between a data-driven strategy and object-

oriented modeling. It is flexible in the sense that it is not 

restricted a-priori to specific building shapes. On the other 

hand, there are still object-oriented aspects included since 

typical building regularities are to identify in the InSAR data. 

 

Concerning the utilization of shadow and layover effects one 

has to keep in mind that, especially in urban areas, layover 

appears very often and may also cover shadow from 

neighboring buildings. Hence, shadow areas are usually hard to 
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identify automatically, while layover areas still carry useful 

information, even if this is embedded in clutter (see the example 

of a repeat-pass TerraSAR-X interferogram in Figure 1). 

Moreover, the incorporation of additional knowledge about 

buildings may help to separate useful signal from clutter, 

especially as buildings have regular shapes and, often, digital 

maps indicating the building footprints are available. 

 

Multi-baseline and multi-aspect approaches show great 

potential to reconstruct buildings with high accuracy and level 

of detail. However, the time needed to acquire the necessary 

images is usually too long for rapid mapping, especially in the 

context of providing crisis information. Consequently, the 

analysis in Section 3 concentrates on accuracy aspects of single-

pass interferometry. The building heights are expected to be 

computed from the interferometric signal of layover regions. 

The inherent contribution of clutter in these areas is 

accommodated by some loss of interferometric coherence, 

which is also taken into account for the final height accuracy.  

 

 
 Figure 1: Interferometric fringes in layover area of tall buildings 

computed from dual-pass TerraSAR-X interferogram (courtesy 

M.Eineder, DLR). 

 

3. HEIGHT ACCURACY OF INSAR MEASURMENTS – 

THEORY 

In this section we revise the mathematical theory for relating 

specific sensor and scene parameters with the desired height 

accuracy for the case of space-borne SAR. A detailed derivation 

of the formulae can be found in (Bamler & Schättler, 1993; 

Bamler & Hartl, 1998; Cumming & Wong, 2005). Figure 2 

(left) depicts the typical geometric configuration of across-track 

interferometry.  The phase values of the two acquisitions can be 

derived from the well-known two-way range equation 

 
1,1 2

2
scattR φ

λ

π
φ +−=  (1) 

 ( ) 2,2 2
2

scattRR φ
λ

π
φ +∆+−=  (2) 

where 1φ and 2φ are the SAR phases at a certain pixel, λ is the 

wavelength, R  is the range between one antenna and the point 

on ground in viewing directionθ , and R∆ is the range 

difference induced by the baseline vector B and its component 

perpendicular to the viewing direction ⊥B , respectively. Under 

the assumption that the unknown phase contributions caused by 

random scattering 1,scattφ  and 2,scattφ are identical 

 2,1, scattscatt φφ ≡   (3) 

one can express the interferometric phaseφ  for a certain point 

by 

 R∆=−=
λ

π
φφφ

4
21

 (4) 

In order to convert the this phase into height values z , it is 

useful to first formulate the functional relationship between 

R∆ and the direction perpendicular to R on ground, ζ  (see 

Figure 2 (right)):  
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Solving for φ  and projecting into the vertical direction z yields 
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Equation (6) is the basis to calculate the so-called phase-to-

height sensitivity: 
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Figure 2: Geometric layout of across-track interferometry (left) and 

definition of local co-ordinate system on ground, ζ , (right). 

 

Figure 3 illustrates the influence of varying incidence angle and 

baseline length on the phase-to-height-sensitivity. As can be 

seen, the interferometric measurement gets more and more 

sensitive the longer the baseline and the smaller (steeper) the 

incidence angle is. 

 

 
Figure 3: Influence of incidence angle and baseline on phase-to-height-

sensitivity 
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In practice, the identity of Eq. (3) does not hold strictly, neither 

for ideal single-pass interferometers. Reasons therefore are 

varying bi-directional scattering, varying volume scattering, 

thermal noise, etc. However, a guess about the similarity of the 

two complex-valued SAR images
1u  and

2u  can be computed 

for each pixel [ ]ki,  by the coherence estimate [ ]ki,γ̂γ =  

calculated in a predefined local neighbourhoodW : 
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Based on the coherence estimate one can derive the probability 

density distribution (pdf) of the interferometric phase 

( )L;pdf φ  of the expectation φ  depending on the number 

of looks L , i.e. the amount of averaging independent pixels 

(Lee et al., 1994): 
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and )!1()( −=Γ xx  being the Gamma function 

and ( )zcbaF ;;,12  being the hypergeometric Gaussian 

function. Figure 4 shows the shape of Eq. 9 for a fixed 

coherence and varying averaging while, in Figure 5, averaging 

is fixed and coherence varies.   

 

Although the pdf of the interferometric phase is not strictly 

Gaussian, it can be seen from the functions displayed in Figures 

4 and 5 that the pdf’s first- and second-order moment (φ and 

φσ ) carry the most information of this distribution. 

Furthermore, assuming that )(zφ is locally linear, one can 

write after Taylor expansion of )(zφ and omitting higher order 

terms: 

 
zz ∆

∆
=

∂

∂ φφ
  (10) 

 

Computing φσ  numerically from Eq. 9 and inserting 

φσφ =∆  and zz σ=∆  into Eq. 10 yields finally the 

standard deviation of the height estimates:  

 
z

z
∂∂

=
φ

σ
σ

φ
 (11) 

 

Figure 6 visualizes the behaviour of the standard deviation of 

the interferometric phase for varying coherence and number of 

looks. An evident feature of this function is the large influence 

of averaging for moderate coherence values. Only four looks, 

for instance, improve the standard deviation approximately by 

50% at a coherence of 0.65. Figure 7 shows typical height 

distributions for varying coherence and a specific fixed set of 

sensor parameters. 

 

 
Figure 4: pdf of interferometric phase for fixed coherence and varying 

averaging.  

 
Figure 5: pdf of interferometric phase for fixed averaging and varying 

coherence. 

 

 

 
Figure 6: Standard deviation of interferometric phase for varying 

coherence and number of looks. 

 

166

       CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 

 
Figure 7: pdf of height for varying coherence (other parameters fixed). 

 

 

4. ACCURACY OF BUILDING HEIGHT ESTIMATION 

The accuracy assessment has been carried out with the scheme 

described above. Parameter values were chosen in accordance 

to the main TanDEM-X specifications. Mutual influence of 

following parameters has been investigated: 

 

- baseline length 

- incidence angle 

- coherence 

- amount of averaging/smoothing 

- wavelength 

 

Figure 8 exemplifies the specific case of moderate coherence 

(0.6) and only one single look, i.e. the original spatial resolution 

is maintained and no smoothing is done. A low coherence has 

been chosen by intention, although significantly better values 

are expected for TanDEM-X, since clutter may decrease the 

coherence in layover areas. The ideal case for this configuration 

suggests to selecting a long baseline (e.g. 150m) and a steep 

incidence angle (15°), which results in a height accuracy of 

approx. 2.5m. Incidence angles less close to the system limits 

would yield an accuracy of 5m – 7m.  

 

The effect of improving coherence is illustrated in Figure 9, 

where height accuracy is plotted against coherence and various 

baselines. It can be seen that, for a baseline of 150m, height 

accuracy increases from 2.5m at a coherence of 0.6 up to 1.5m 

at a coherence of 0.9.   

 

The final assessment deals with the influence of the number of 

looks. A coherence of 0.7 for the case of 200m baseline and 15° 

incidence angle enables the derivation of building heights with 

1m accuracy for the given viewing geometry (see Figure 10). As 

this kind of averaging reduces the spatial resolution, it is 

reasonable to investigate the effect of smoothing onto the height 

accuracy only up to four looks. What is moreover evident from 

Figure 10 is that the increase of height accuracy is significant 

from one to two and three looks, but it is then gradually 

attenuating – especially for typical coherence values in the 

range of 0.6 – 0.8.  

 

As a last remark we refer to the used wavelength (X-band in our 

calculations). Equation 7 shows that the RADAR wavelength is 

a constant factor for the phase-to-height-sensitivity, which 

directly propagates to the standard deviation of height 

measurements. A longer wavelength (L-band for instance) 

yields a worse phase-to-height sensitivity and consequently a 

worse height accuracy. It should be noted, however, that long 

wavelengths generally yield better interferometric coherence 

depending on the scene characteristics. Hence, this effect could 

be partly compensated. 

 
Figure 8: Height accuracy for varying baseline and incidence angle 

while other parameters are fixed. 

 

 
Figure 9: Height accuracy for varying baseline and coherence while 

other parameters are fixed. 

 

 Figure 10: Height accuracy for varying looks and coherence while 

other parameters are fixed. 

 

5. DISCUSSION AND CONCLUSION 

The above analysis shows that space-borne interferometric SAR 

systems like TanDEM-X will allow to measure vertical heights 

with a standard deviation of roughly 1.5m, which also holds for 

the case of moderate coherence in layover areas. Regarding the 

application of rapid mapping, this accuracy will certainly allow 

the estimation of the number of floors or the detection of 

changes in the 3D building geometry. However, baselines and 

incidence angles have to be chosen carefully, as they are close 

to the technical limits (i.e. “critical baseline” and steep viewing 

angle). These constraints can be relaxed when additional data in 

form of digital ground plans is available. These allow, for 

instance, the utilization of specialized filters instead of simple 

multi-looking. The geometry of the filter mask can then be 

adapted to the respective building shape to include as much 

pixels as possible as observations into the height measurement. 

Recall Figure 6 to see how the standard deviation of 

interferometric phase improves with increasing number of 

observations. 
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Further research will include investigations of the validity of 

Eq. 10 in real scenarios, e.g. by calculating the accuracy of 

heights based on phase differences while the phase estimate for 

the ground may have better accuracy than those of walls and 

roof. Another line of research could be the use of explicit 

models for scatterers typically appearing at buildings, instead of 

modeling their influence only implicitly by a lower coherence.   
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ABSTRACT: 

 

State-of-the-art space borne SAR sensors are capable of acquiring imagery with a geometric resolution of one meter while airborne 

SAR systems provide even finer ground sampling distance. In such data, individual objects in urban areas like bridges and buildings 

become visible in detail. However, the side-looking sensor principle leads to occlusion and layover effects that hamper 

interpretability. As a consequence, SAR data is often analysed in combination with complementary data from topographic maps or 

optical remote sensing images. This work focuses on the combination of features from InSAR data and optical aerial imagery for 

building recognition in dense urban areas. It is shown that a combined analysis of InSAR and optical data very much improves 

detection results compared to building recognition based on merely a single data source. 
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1. INTRODUCTION 

Due to its independence of daylight and all-weather capability, 

synthetic aperture radar (SAR) has become a key remote 

sensing technique in the last decades. One main application 

scenario arises in crisis situations when the acquisition of a 

scene is required immediately for rapid hazard response. Urban 

areas play a key-role since the lives of thousands of people may 

be in danger in a relatively small area. In SAR data of one meter 

geometric resolution collected by modern space borne sensors 

such as TerraSAR-X and Cosmo-SkyMed, the geometric extent 

of individual objects like bridges, buildings and roads becomes 

visible. In airborne data such objects are imaged with even more 

detail. However, shadowing and layover effects, typical for 

SAR image acquisitions in urban areas, complicate 

interpretation. Small buildings are often occluded by higher 

ones while façades overlap with trees and cars on the streets. In 

addition, the appearance of an individual building in the image 

highly depends on the sensor’s aspect. Buildings that are not 

oriented in azimuth direction with respect to the sensor are 

often hard to detect. This drawback can be partly overcome by 

using SAR images from multiple aspects (Xu and Jin, 2007). 

Building recognition and reconstruction can be further 

improved based on interferometric SAR (InSAR) acquisitions 

from two orthogonal flight directions (Thiele et al., 2007).  

Nevertheless, automatic urban scene analysis based on SAR 

data alone is hard to conduct. SAR data interpretation can be 

supported with additional information from GIS databases or 

high-resolution optical imagery. Optical images have the 

advantage of being widely available. In (Soergel et al., 2007) 

high-resolution airborne InSAR data is combined with an 

optical aerial image in order to three-dimensionally reconstruct 

bridges over water. Tupin and Roux (2003) propose an 

approach to automatically extract footprints of large flat-roofed 

buildings based on line features by means of a SAR amplitude 

image and an optical aerial image. Furthermore, homogeneous 

regions in an aerial photo, represented in a region adjacency 

graph, are used in (Tupin and Roux, 2005) to regularize 

elevation data derived from radargrammetric processing of a 

SAR image pair by means of Markov Random Fields. 

In this paper, an approach for building recognition in dense 

urban areas is presented that combines line features from mono-

aspect InSAR data with classification results from one optical 

aerial image. Building corner lines extracted from InSAR data 

are introduced as features into a classification framework that is 

based on a segmentation of the optical image. Optical features 

and InSAR lines are jointly used in order to evaluate building 

hypothesis. The focus is on the fusion approach of building 

primitive hypothesis.   

 

2. ANALYSIS OF OPTICAL DATA 

Optical images provide high resolution multi-spectral 

information of urban scenes. For human interpreters they are by 

far more intuitive to understand than SAR data since the 

imaging geometry corresponds to the human eye. In aerial 

imagery of 0.3 meters resolution, like used in this project, 

building roofs become visible in great detail. In addition, façade 

details may appear in the image if high buildings situated far 

away from the nadir point of the sensor are imaged. 

 

2.1 Appearance of Buildings 

The appearance of an individual building mapped by any 

imaging sensor is both governed by its own properties (e.g., 

material, geometry) as well as by sensor characteristics (e.g., 

principle, spectral domain, pose), which have to be considered 

for recognition. For example, in optical images acquired from a 

near nadir perspective, building roofs are the most important 

features for automatic detection. Shadows are also good 

indicators for buildings (Fig. 1) and distinguish them, for 

instance, from road segments or parking lots. In western 
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countries rooftops look usually grey, reddish or brownish but 

almost never green. Roof types can roughly be subdivided into 

flat roofs and gable-roofs. Flat roofs coincide often with rather 

homogeneous image regions (Fig. 1a) while gable-roofs 

sometimes appear less homogeneous. Chimneys and shadows 

cast by chimneys may further complicate roof extraction if 

homogeneous planes are fit to roofs (Fig. 1 c,d). Due to similar 

colour of adjacent roof and street regions, such entities are 

sometimes hard to be told apart even for human interpreters 

(Fig. 1 a,b).  

In this work the focus is on fusion of building primitive 

hypotheses delivered by approaches from the literature, tailored 

to the specific constraints that are determined by the 

particularities of the optical and microwave realm, respectively. 

With respect to the visible domain, a robust model-based roof 

detection approach introduced in Mueller and Zaum (2005), 

known to deliver good results, was used. It is based on an initial 

region growing step yielding homogeneous segments. As a 

consequence of the previously outlined diverse appearance of 

building roofs in optical imagery, such segmentation may 

sometimes lead to suboptimal results if contrast between roof 

regions and adjacent regions is very low (Fig. 1a). Thus, the 

region growing step can lead to erroneous roof segments (Fig. 

1b). Gable-roofs usually split up into at least two segments if 

they are not oriented along the sun illumination direction (Fig. 

1. c,d). Sometimes, gable-roofs may split up into even more 

than two segments and only parts are evaluated as roof regions. 

In such cases, the introduction of building hints from SAR data 

can highly improve building detection.  

 

2.2 Feature Extraction 

The building roof extraction approach consists of a low-level 

and a subsequent high-level image processing step (Mueller and 

Zaum, 2005). The low-level step includes transformation of the 

RGB image to HSI (Hue Saturation Intensity) representation, a 

segmentation of building hypotheses in the intensity image and 

the application of morphological operators in order to close 

small holes. Region growing, initialized with regularly 

distributed seed points on a grid, is used as image segmentation 

method. Seed points that fall into a grid cell which either 

consists of shadow or features a greenish hue value are erased 

and no region growing is conducted. Adjacent roof regions 

having a significant shadow region next to them are merged. 

This step is important for gable-roofed buildings because 

sometimes the roof is split at the roof ridge due to different 

illumination of the two roof parts. However, gable-roofs that 

were split up into more than two segments are not merged to 

one single segment which is the main reason for undetected 

buildings later-on in the process.  

Features are extracted for each roof hypothesis in order to 

prepare for classification. Four different feature types are used, 

based on geometry, shape, radiometry, and structure. Geometric 

features are the region size and its perimeter. The shape of a 

building region is described by its compactness and length. 

Right angles, distinguishing roofs from trees in the real world, 

are not used as a shape feature since the region growing step 

may lead to segments that are not rectangular although they 

represent roofs (Fig. 1b). Radiometry is used in order to sort out 

regions with a high percentage of green pixels. Structural 

features are for example neighbouring building regions and 

shadows cast by the potential building. Shadows are good hints 

for elevated objects. In order to not take into account shadows 

cast by trees, only shadows with relatively straight borders are 

considered as belonging to buildings.  

Finally, a classification based on the previously determined 

feature vector takes place (see chapter 4.2 for details). All 

necessary evaluation intervals and thresholds were learned from 

manually classified training regions.  

 

 

3. ANALYSIS OF INSAR DATA 

3.1 Appearance of Buildings 

The appearance of buildings in InSAR data is characterized by 

the oblique illumination of the scene and therefore the image 

projection in slant range geometry. Furthermore, it depends on 

sensor parameters, on properties of the imaged object itself, and 

on the object’s direct environment. 

In Fig. 2 an example of flat-roofed buildings in optical (Fig. 2a) 

and InSAR data (Fig. 2 b,d) is given. The appearance of 

different building types and effects that occur if the scene is 

illuminated from two orthogonal flight directions have been 

comprehensively discussed in Thiele et al. (2007 and 2008). 

The magnitude profile of a building is typically a sequence of 

areas of various signal properties: layover, corner reflector 

between ground and building wall, roof, and finally radar 

shadow (Fig. 2c). The layover area is the building signal 

situated the closest to the sensor in the image because its 

distance is the shortest. It usually appears bright due to 

superposition of backscatter from ground, façade, and roof. The 

layover area ends at the bright so-called corner reflector line. 

This salient feature is caused by double-bounce reflection at a 

dihedral corner reflector spanned by ground and wall along the 

building. This line coincides with a part of the building 

footprint and can be distinguished from other lines of bright 

scattering using the InSAR phases (see Fig. 2d and profile in 

Fig. 2e). The single backscatter signal of the building roof is 

either included in the layover mixture or scattered away from 

 
a 

 
b 

 
c 

 
d 

Figure 1.  Flat-roofed (a) and gable-roofed (c) building in optical image overlaid with corresponding regions after segmentation (b,c) 
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the sensor depending on roof structure and illumination 

geometry. Ground behind the building is partly occluded by the 

building shadow leading to a dark region in the image. 

A building also leads to specific patterns in the interferometric 

phase data (Fig. 2d and Fig. 2e) because the phase value of a 

single range cell results from a mixture of the backscatter of 

different contributors, such as ground, façade, and roof in the 

layover area. Again, the appearance is characterized by a 

layover region and a homogeneous roof region (in Fig. 2 not 

observable because of the narrow building width). The phase of 

the terrain enclosing the building is displayed slightly darker. A 

similar phase value is calculated at the building corner location, 

which is used for the detection of building footprints. Since no 

signal is received in shadow area, the related InSAR phase 

carries no useful signal but noise only. 

 

3.2 Feature Extraction 

This approach of building recognition in InSAR data is based 

on the detection of parts of the building footprint. First, the 

segmentation of bright lines is carried out in the magnitude 

data. Based on this set of lines, only the ones caused by a 

dihedral corner reflector spanned by ground and building wall 

are used as building hints. In order to exclude all lines that do 

not fulfil this criterion, the local InSAR heights are analysed. 

Finally, the filtered corner lines are projected into the same 

ground range geometry as the optical data. 

 

3.2.1 Corner Line Segmentation 

As previously discussed, the bright corner lines are very useful 

hints to buildings since they provide information about the true 

location of a part of the building footprint. The full process of 

corner line detection is shown in Fig. 3, upper row. 

The line detection is carried out in slant range geometry based 

on the original magnitude images (Fig. 3 “Magnitude”) by using 

an adapted ratio line detector according to Tupin et al. (1998). 

This template detector determines the probability of a pixel of 

belonging to a line. In our case, eight different template 

orientations are considered. The probability image for the 

vertical template orientation is shown in Fig. 3 “Line”. 

Thereafter, line segments are assembled based on the eight 

probability images and their respective window orientation. The 

resulting segments are fitted to straight lines and edges, 

respectively, by linear approximation and subsequent 

prolongation (yellow lines in Fig. 3). 

 

3.2.2 Geocoding of Building Features 

After line extraction, the interferometric heights are calculated 

as described in (Thiele et al., 2007). Results are shown in 

Fig. 3 “Heights”. Local InSAR heights are investigated in order 

to discriminate lines caused by direct reflection and lines due to 

double-bounce reflection between either ground and wall or 

roof and substructures. For this filter step, the height difference 

between Digital Surface Model (DSM) and Digital Terrain 

Model (DTM) is used. 

The DSM is given by the calculated InSAR heights. In order to 

derive the DTM from it, a filter mask is computed to define the 

DSM pixels which are considered in the DTM generation. Only 

pixels with a high coherence value (Fig. 3 “Coherence”) and an 

InSAR height close to the global mean terrain height are 

considered in equation 1 (Fig. 3 “Mask”). 
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Based on this mask and the InSAR heights, a DTM height value 

is calculated over an area of 50 m x 50 m in ground range 

geometry (Fig. 3 “DTM”). Thereafter, the height differences 

(i.e., a normalized DSM) between DSM and DTM are 

calculated (Fig. 3 “Height difference”). 

In the following line filtering step, lines are considered as real 

building corner lines if their neighbouring pixels show a low 

mean height difference value (Fig. 3 “Height difference”, 

rescaled for visualization). The filtered real corner lines are 

displayed in Fig. 3 (red lines). Final geo-coding of these corner 

lines is carried out using the InSAR heights. The resulting 

geographic position of the corner lines superimposed onto the 

optical image is displayed for the entire test site in Fig. 5b. 

 

 

4. FUSION OF EXTRACTION OUTCOMES 

In order to accurately combine features from InSAR data and 

the optical image, different sensor geometries and projections 

have to be considered carefully. It is required that both feature 

sets are projected to the same geometry, i.e., all data have to be 

transformed to a common coordinate system (Thiele et al., 

2006). In addition, a fusion and classification framework for 

combining the detection outcomes from the optical image and 

from the InSAR data has to be set up. 
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Figure 2.  Appearance of flat-roofed buildings in optical data (a), in SAR magnitude data with illumination from right to left (b,c) 

and InSAR phase data (d,e) 
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4.1 Sensor geometries 

The particularities of Synthetic Aperture Radar (SAR) and 

optical cameras in terms of sensor principle and viewing 

geometry result in very different properties of the observed 

objects in the acquired imagery. In Fig. 4a an elevated object P 

of height h above ground is imaged by both a SAR sensor and 

an optical sensor (OPT). SAR is an active technique measuring 

slant ranges to ground objects with a rather poor angular 

resolution in elevation direction. Layover, foreshortening, and 

shadowing effects consequently occur and complicate the 

interpretation of urban scenes. Buildings therefore are displaced 

towards the sensor. Point P in Fig. 4a is thus mapped to point 

PS in the image. The degree of displacement depends on the 

object height h and the off-nadir angle θ1 of the SAR-sensor. 

By contrast, optical sensors are passive sensors acquiring 

images with small off-nadir angles. No distances but angles to 

ground objects are measured. Elevated objects like P in Fig. 4a 

that are not located directly in nadir view of the sensor are 

displaced away from the sensor. Instead of being mapped to P’, 

P is mapped to PO in the image. The degree of displacement 

depends on the distance between a building and the sensor’s 

nadir point as well as on a building’s height. The further away 

an elevated object P is located from the nadir axis of the optical 

sensor (increasing θ2) and the higher it is, the more the building 

roof is displaced. The higher P is, the further away P is located 

from the optical nadir axis and the greater the off-nadir angle θ1 

becomes, the longer the distance between PO and PS will get.   

The optical data was ortho-rectified by means of a DTM in 

order to reduce image distortions due to terrain undulations. 

Building façades stay visible and roofs are displaced away from 

the sensor nadir point since buildings are not included in the 

DTM.  Such displacement effect can be seen in Fig. 4b to 4d. In 

Fig. 4b the building in the optical image is overlaid with its 

cadastral boundaries. The building roof is displaced to the right 

since the sensor nadir point is located on the left. The upper 

right part of the building is more shifted to the right than the 

lower left part because it is higher (see Fig. 4d for building 

height). Fig. 4c shows the same cut-out overlaid with the corner 

line extracted from the corresponding InSAR cut-out. Such 

corner line represents the location where the building wall 

meets the ground which can nicely be seen in Fig. 4d. Due to 

the previously outlined perspective effect the building roof falls 

to the right over the corner line. This effect is of high interest 

and can be exploited for three-dimensional modelling of the 

scene (Inglada and Giros, 2004, Wegner and Soergel, 2008) 

because the distance between the corner line and the building 

edge comprises height information. 

 

4.2 Joint classification framework 

A joint classification is carried out after having projected the 

optical and the InSAR primitive objects to the same ground 

geometry. In order to combine the building hints from optical 

and InSAR data, a fusion step is required. One possibility is 

data fusion in a Bayesian framework while another would be 

Dempster-Shafer evidential theory (Klein, 2004). Both 

approaches are usually requiring an object to be represented 

identically in the different sensor outputs, i.e., exactly the same 

region is found in both datasets but with slightly different 

classification results. This requirement is not met in the case of 

the combination of line features from InSAR data with roof 

regions from optical imagery.  

Hence, combined analysis is based on the linear regression 

classifier already used for building extraction from optical data 

in (Mueller and Zaum, 2005). All potential building objects 

from the optical image are evaluated based on a set of optical 

features described in section 2.2 and on the InSAR corner line 

objects. The evaluation process is split up into two parts, an 

optical part and an InSAR part. Optical primitive objects are 

believed to contribute more information to building detection 

and hence their weight is set to two thirds. InSAR data is 

assumed to contribute less information to overall building 

recognition and thus the weight of primitive objects derived 
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Figure 3.  Upper row: steps of building corner segmentation in slant range geometry with illumination direction from left to right; 

lower row: steps of the InSAR height filtering and slant range to ground range projection of the building corner lines 
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from SAR data is set to one third. Such weights are determined 

empirically and lead to good results. However, further research 

has to be done in order to support this choice with reasonable 

statistics. 

A quality measure is assigned to each region and initially set to 

1. In the first evaluation part each primitive is evaluated based 

on the optical feature vector. Each time a feature does not 

completely support the building hypothesis, the quality measure 

is reduced by multiplication with a value between 0 and 1. The 

exact reduction value for each feature was learned on manually 

labelled training data. Such reduced quality measure is again 

multiplied with another reduction value if another feature partly 

rejects a building hypothesis. The final quality measure based 

on the optical feature vector is weighted with 0.666. 

A second region evaluation is conducted based on the corner 

line primitives extracted from InSAR data. First, all building 

object hypotheses are enlarged by two subsequent dilation 

operations. In this manner, a two-pixel wide buffer, 

corresponding to 0.6 meters in ground geometry, is added to the 

original region since building roofs may be shifted away from 

the corner line. Thereafter, it is checked if the corner line 

crosses this enlarged region with a certain minimum length. The 

initial quality measure is multiplied with a reduction value like 

in the optical case if this is not the case. The resulting quality 

measure based on the corner line is multiplied with a weighting 

factor of 0.333.   

Finally, the overall quality measure is obtained by summing up 

the optical and the InSAR quality measures. In case neither an 

optical feature nor an InSAR feature has decreased the quality 

measure, both quality measures sum up to one. All regions that 

have a quality measure greater than an empirically determined 

threshold are classified as building objects. Such threshold was 

set to 0.6. As a consequence, a region may be classified as 

building region even if there is no hint from the InSAR data, but 

strong evidence from the photo. The reason is that some 

buildings do not show corner lines due to an unfavourable 

orientation towards the SAR-sensor (see the gabled-roofed 

buildings in the lower right corner of Fig. 5b) or occlusion of 

the potential corner line region by plants. On the contrary, a 

region cannot be evaluated as building region based merely on 

the corner line which are strong hints for buildings but may also 

caused by other abrupt height changes in urban areas.  

 

 

5. RESULTS 

The InSAR data used in this project was recorded by the AeS-1 

sensor of Intermap Technologies. The spatial resolution in 

range is about 38 cm while 16 cm resolution is achieved in 

azimuth direction. The two X-Band sensors were operated with 

an effective baseline of approximately 2.4 m. The mapped 

residential area in the city of Dorsten in Germany is 

characterized by a mixture of flat-roofed and gable-roofed 

buildings and low terrain undulation. 

Results of the presented approach for building recognition by 

means of feature combination from optical imagery and InSAR 

data are shown in Fig. 5.  In Fig. 5a building recognition results 

based solely on optical features are displayed. All parameters 

where specifically adjusted in order to achieve the lowest 

possible false alarm rate while still detecting buildings. Less 

than 50% of the buildings contained in the displayed scene are 

detected. In addition, false alarms could not be avoided 

completely. Results are rather poor due to the assumption that 

roofs do not split up into more than two regions during the 

region growing step, which is not met for the data at hand. As a 

consequence, several gable-roofed buildings with reddish roofs 

in the lower right corner of the image could not be recognized. 

Some big flat-roofed buildings in the upper part of the image 

are not detected because their colour and shape are similar to 

such of street segments. Thus, their evaluation value does not 

exceed the threshold.  

Fig. 5b shows the corner lines extracted from the InSAR data 

superimposed onto one SAR magnitude image. An InSAR 

corner line could be detected for almost all buildings in this 

scene. Some lines are split into two parts because the 

corresponding building was partly occluded by, e.g., plants. 

Some corner lines in the lower right diagonally cross buildings 

which is not plausible. Most likely this effect is an artefact 

introduced by too large tolerances applied in the merging and 

prolongation steps of adjacent line segments. The final building 

recognition result using both optical and InSAR features is 

shown in Fig. 5c. The overall building recognition rate could be 

significantly improved to approximately 80% by integration of 

the InSAR corner lines into the classification procedure. 

Additionally, all false alarms could be suppressed. However, the 

gable-roofed buildings in the lower right corner stay undetected 

although InSAR corner lines are present. Such missed 

detections are due to the over-segmentation of the rather 

inhomogeneous roof regions in the optical image.  

 

 

6. CONCLUSION AND OUTLOOK 

In this work, first building detection results from combined 

optical and InSAR data on feature level were presented. A 

rather simple approach for feature fusion was introduced 

leading to a significantly improved building recognition rate. 

Additionally, the number of false alarms could be reduced 

considerably by the joint use of optical and InSAR features. 

Corner lines from InSAR data proved to be essential hints for 

 
a 

 
b 

 
c 

 
d 

Figure 4.  Comparison of SAR and optical viewing geometry under the assumption of locally flat terrain (a); optical data (b) overlaid 

with cadastral building footprint; optical data (e) and LIDAR data (d) overlaid with detected building corner 
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buildings. Such corner lines also appear in single SAR images 

and hence this approach is not limited to InSAR data.  

Further developed, this approach may be the basis for a change 

detection method after natural hazards like flooding and 

hurricanes. An optical image acquired before the hazard and 

SAR data acquired afterwards can be analyzed using the 

presented approach. A human interpreter would only have to 

check those buildings for damages that were not detected from 

both data sources. Hence, all buildings recognized from the 

combination of optical and SAR features, shown in red in Fig.  

5c, would be classified as undamaged. Only buildings in the 

optical image that where not detected would have to be checked 

speeding up the entire damage assessment step significantly.   

Although first results are encouraging, further improvements 

have to be made. One main disadvantage of the presented 

classification approach is that its quality measures are not 

interpretable as probabilities in a Bayesian sense. Although 

many parameters have been learned from training data, parts of 

the approach are still ad-hoc. A next step will thus be the 

integration of the presented approach into a Bayesian 

framework.  

Furthermore, the differences of the sensor geometries should be 

used for further building recognition enhancement. Since the 

roofs of high buildings are displaced away from the sensor and 

parts of the façade appear in the image, roof regions have to be 

shifted towards the sensor in order to delineate building 

footprints. Such displacement also bears height information 

which may be used as an additional feature for building 

recognition. More height information may also be derived 

directly from the InSAR data.  

Finally, three-dimensional modelling of the scene could be 

accomplished based on the building footprints, a height 

hypothesis and maybe even the estimation of the roof type. An 

iterative joint classification and three-dimensional modelling in 

a Bayesian framework, including context information, will be 

the final goal of this project.  
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Figure 5.  Results of building detection based on optical data (a), detected corner lines in the InSAR data (b), and of building 

detection based on InSAR and optical data (c) 
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ABSTRACT:

Caused by the rising interest in traffic surveillance for simulations and decision management many publications concentrate on auto-
matic vehicle detection or tracking. Quantities and velocities of different car classes form the data basis for almost every traffic model.
Especially during mass events or disasters a wide-area traffic monitoring on demand is needed which can only be provided by airborne
systems. This means a massive amount of image information to be handled. In this paper we present a combination of vehicle detection
and tracking which is adapted to the special restrictions given on image size and flow but nevertheless yields reliable information about
the traffic situation.
Combining a set of modified edge filters it is possible to detect cars of different sizes and orientations with minimum computing effort,
if some a priori information about the street network is used. The found vehicles are tracked between two consecutive images by
an algorithm using Singular Value Decomposition. Concerning their distance and correlation the features are assigned pairwise with
respect to their global positioning among each other. Choosing only the best correlating assignments it is possible to compute reliable
values for the average velocities.

1 INTRODUCTION

1.1 Motivation

The gathering of traffic information is a base for all kinds of traf-
fic modeling, simulation and prediction for tasks like emission
reduction, efficient use of infrastructure or extension planing of
the road network as well as the intervention and resource planing.
Next to the use of inductive loops, Video Image Detection Sys-
tems (VIDS) have become a common alternative due to their low
price as well as their simplicity and effort of installation. Further-
more inductive loops can’t cover the whole road network and a
lot of data has to be estimated. Especially during mass events or
disasters with huge congestions or road blocks, they can’t yield
reliable information.
For this special purpose the German Aerospace Center (DLR
e.V.) developed the ANTAR system for airborne traffic monitor-
ing on demand. During the soccer world cup 2006 it was success-
fully applied to gather traffic data and predict traffic situation in
three German cities (Ruhé et al., 2007). Based on this the DLR is
developing the ARGOS system for wide-area traffic monitoring
(fig.1). It contains next to a radar system the 3K-Cam, a device
of three digital cameras with 16 mega pixels each. Together they
cover an area of 2,5 km x 0,7 km with a resolution of 20 cm at
an altitude of 1000 m over ground. Additionally a GPS/IMU-unit
is used to record positioning and orientation data for every image
taken. Thereby the achieved image data gets orthorectified and
georeferenced on-board which means that the images arriving the
traffic detecting software can be used as map images with given
orientation and scale. A fact that makes measuring distances and
computing velocities less complex.
In the first chapter the conditions related to the observation sys-
tem are explained as well as the published work on this area. The
second chapter describes the used algorithms, a modified edge
filter for fast vehicle detection and an extended singular value de-
composition concerning distances and correlations for tracking in
very short sequences. After this the results with a few examples
are presented. Finally a conclusion with considering possible fur-
ther research will close the paper.

Figure 1: Traffic monitoring system ARGOS

1.2 Special conditions

There are two special points to consider while developing de-
tection and tracking. It should be respected that the preprocessed
images depending on their altitude over ground can be very large,
in the shown case 25-30 mega pixels. That’s why the detecting
algorithm should be rather fast than exact. Already the previous
system ANTAR demonstrated that for an overview of the traffic
situation a completeness of two thirds is acceptable.
Due to the mentioned size of the images (original size is 16 mega
pixels) they cannot be transmitted continuously. After a burst of
a few images (2-4) the stream is cut to save them. Therefore it is
not necessary to implement a complex tracking filter which needs
a long period to adapt to the scene.

1.3 Related work

A grand variety of approaches in vehicle detection as well as in
object tracking has been released in the last years.
Detection methods can be divided into two groups, depending
on the kind of model being used. The use of explicit models
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for example is explained in (Haag and Nagel, 1999), (Moon et
al., 2002), (Hinz, 2004) and (Ernst et al., 2005). In (Haag and
Nagel, 1999) a very extensive database of about 400 different
three-dimensional car models is used to predict the appearance
of vehicles including their shadow cast. In (Hinz, 2004) the au-
thor uses not only the shadow but additionally the luminance and
reflectivity of the car’s surface as well which of course is more
expensive to process. Next to shape and shadow in (Zhao and
Nevatia, 2003) they try to recognize the windshield of vehicles.
The final decision is made by a Bayesian Network. Most of them
have a very reliable detection rate of more than 90 percent but
a long computing time. In the papers (Moon et al., 2002) and
(Ernst et al., 2005) they use rather simple two-dimensional mod-
els for detection. While in (Ernst et al., 2005) the authors search
in the edge filtered image for rectangular objects of certain size
in (Moon et al., 2002) they already shape the edge filter to a rect-
angle of expected car size. Both of them provide a fast and ac-
ceptable detection rate using additional information about street
area and direction.
The use of implicit models is explained in (Grabner et al., 2008)
and (Lei et al., 2008). In (Grabner et al., 2008) the author sup-
poses to use a learning AdaBoost algorithm which is robust and
fast by making a lot of cascaded weak decisions. In (Lei et al.,
2008) they train a support vector machine with the SIFT descrip-
tors of selected cars and non-cars. But both of these approaches
have to be trained with lots of positive and negative samples be-
fore working independently. Additionally it is not easy to cover
all cases of illumination and environment. That’s why many lean-
ing algorithms have to be trained for every situation separately.
Another easy approach for detection of moving cars without us-
ing any model is explained in (Reinartz et al., 2006) where they
detect all moving objects in adjacent images by computing the
normalized difference image. But as the georegistration of the
images often is less exact than the pixel size, the images have to
be coregistered first. On the other hand only moving objects can
be detected while traffic jams or queues in front of a traffic light
would be ignored.
Concerning tracking there are lots of publications using optical
flow and Kalman or particle filters to predict the expected dis-
placement and appearance in following images. (Haag and Nagel,
1999) and (Nejadasl et al., 2006) pursued this approach which is
not easy to realize in the special case of only two or three adjacent
images. In (Lenhart and Hinz, 2006) they use especially triplets
of images to determine the best match between at least three states
which can be described as a kind of prediction. Another good
idea for the special case of very short bursts is presented in (Scott
and Longuet-Higgins, 1991) and improved in (Pilu, 1997). The
authors use singular value decomposition of a distance matrix to
match a group of features to another one with respect to the rela-
tive positions of all features among each other. (Pilu, 1997) later
extends the approach by adding the correlation between pairs of
features.

2 APPROACH

2.1 Preprocessing

To identify the active regions as well as the orientation of images
among each other they have to be georeferenced, which means
their absolute geographic position and dimension have to be de-
fined. Related to the GPS/IMU information and a digital terrain
model the image data gets projected into GeoTIFF images, which
are plane and oriented into north direction. This is useful to com-
bine the recorded images with existing datasets like maps or street
data. To avoid examining the whole image data, only the street
area given by a database is considered.

2.2 Detection

For providing fast detection of traffic objects in the large images
a set of modified edge filters, that represent a two-dimensional
car model, is used. Recent tests showed that the car’s color in-
formation does not yield better results in detection than its gray
value. Therefore the original images are converted into gray im-
ages. This conversion saves two thirds of filtering time. As there
is additional information about street area and orientation this
knowledge is used as well. The databases provided by Navteq
(www.navteq.com) and Atkis (www.atkis.de) for example con-
tain that information about the street network. For every street
segment covered by the image a bounding box around it is cut
out. The subimage is masked with the street segment to only use
the filters on traffic area. We use neither a Hough transforma-
tion for finding straight edges nor a filter in shape of the whole
car, as mentioned in (Moon et al., 2002). But we create four spe-
cial shaped edge filters to represent all edges of the car model,
which are elongated to the average expected size and turned into
the direction given by the street database (fig.2 and 3). To

Figure 2: Mask based on Navteq street segments

Figure 3: The associated filter kernels

Figure 4: The shifted and thresholded filter answers 2 and 3

avoid filtering for all different car sizes, we only shift the filter
answers (fig.4) to the expected car edges within a certain range.
This has the same effect as positioning the filter kernels around
an anchor point. In the conjunction image of the four thresholded
and shifted edge images remain blobs at the position, where all
four filters have answered strong enough to the related edge filter.
The regions remaining (fig.5) become thinned by a non-maxima
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suppression until one pixel each is left representing the car’s cen-
ter. Fig.6 shows the regions left related to the cars that caused
them.
For bigger vehicles like trucks the same filter answers are used.
To recognize long edges without using new filters, the given an-
swers of the side edges are shifted along the side of the car and
always conjuncted with each other.
To avoid cars being detected twice, all observations are tested
pairwise for their distances among each other. Some observations
have more than one maximum, or vehicles are detected twice be-
tween two neighboring street segments. With respect to their size
and orientation, objects below a certain distance to each other are
discarded while only the one with the strongest intensity remains.

Figure 5: Regions where all filters answered

Figure 6: The detected cars

2.3 Tracking

As there are only short bursts of images, a classic Kalman filter
cannot really be used. As already mentioned Lenhart’s approach
in (Lenhart and Hinz, 2006) uses prediction for image triplets.
This works just in case there are triplets. Bursts with less than
three images, which appear as well, have to be handled differ-
ent. That’s why we only consider relations between two con-
secutive images. Scott and Longuet-Higgins suggest in (Scott

and Longuet-Higgins, 1991) a singular value decomposition as a
kind of one-to-one correspondence with respect to the positions
of all neighboring objects. This is more an association than a real
tracking as only the last image’s information is used. If I and
J are two images with m features Ii and n features Jj we build
a proximity matrix G with the Gaussian-weighted distances Gij
between every feature Ii and Jj .

Gij = e−r
2
ij/2σ

2
(1)

where rij = ||Ii − Jj || is is the euclidean distance. So the ele-
mentsGij decrease monotonically with the distance. The param-
eter σ defines the degree of interaction between the features. A
small value enforces local and a big one rather global interaction.
It is recommended to choose σ as large as the average expected
distance the feature pairs have.
The next step is to perform a singular value decomposition of the
proximity matrix G. The Algorithm is provided by a lot of soft-
ware libraries. Here the one in OpenCV was used.

G = TDUT (2)

After the SVD the matrices T and U are orthonormal matrices and
the diagonal matrix Dm×n contains the positive singular values
as diagonal elements in descending order. As the third and last
step a new matrix P has to be computed by

P = TEUT (3)

where E is the changed diagonal matrix D with all elements re-
placed by 1. The resulting matrix P has the same dimensions as
D but by the algorithm the values Pij for good pairings have been
amplified while those for bad ones have been reduced. So if Pij
is the greatest element in column and row the two features Ii and
Jj are in a 1:1 correspondence with one another.
Furthermore Pilu (Pilu, 1997) extends the algorithm for feature-
based stereo matching by using the cross correlation of two fea-
tures next to their distance. So the SVD-association can be used
for images concerning the similarity of a certain window around
their features. Adding this (Gaussian-weighted) information to
the proximity matrix G the elements Gij result as follows:

Gij = e−(Cij−1)2/2γ2
· e−r

2
ij/2σ

2
(4)

where the left term is the Gaussian-weighted function of the nor-
malized correlation coefficient Cij between the features Ii and
Jj . The parameter γ determines how fast the values decrease
with Cij . During our tests the best values lie between 0.4 and
1.0.

3 RESULTS AND DISCUSSION

3.1 Detection

The computing time and the accuracy of detection always depend
on the number, size and quality of street segments given by the
database. In the first example (shown in fig.6) only a broad high-
way in Munich has been tested without any smaller streets being
considered. The processing of the 28 mega pixels large image
took 30 seconds (Athlon 64 X2, 2.2 GHz, 2 GB RAM). The 96
vehicles were counted manually as ground truth and compared
with the detected vehicles. The varying detection rates caused
by varying thresholds are shown as the red graph in fig.7 and 8.
As one can see there is always a trade-off between completeness
and correctness. The more sensitive the thresholds are set the
more false positives they will find. The graph shows the detec-
tion rate (number of true detected cars/real number of cars) in
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relation to the rate of false positives (number of false detected
objects/number of detected objects). To be honest the false pos-
itives rate is not very objective, as the number of false detected
objects does not depend on the real number of cars, and could
turn out very bad just in case there is only one car in the image.
Therefore in (Lei et al., 2008) they consider the FP-number in
relation to the length of streets. A still better way would be to
take the street area, for example ’false positives per hectare’. In
this example there is an optimal point, where detection reaches
80 percent while the FP-rate is only ten percent or one car per
hectare.
A rather bad sample (the worst in our evaluation) represents the

Figure 7: Detection rates on a highway (red) and narrow
streets (blue) depending on false positives per detected cars

Figure 8: Detection rates on a highway (red) and narrow
streets (blue) depending on false positives per area

blue graph in fig.7 and 8 where more than 300 cars have been
clicked by hand. If we consider streets of all sizes in the Munich
suburban area, on the one hand the detection time takes longer
(more than 60 seconds) and the results become worse as well.
The detection rate stays around two thirds while only the number
of false positives rises from 5 up to 25 per hectare.
A reason for the bad detection rate in the second example is the
accuracy of street coordinates. As many smaller street elements

are drawn next to the real street (fig.9) the algorithm misses many
cars while detecting some rectangular structures next to the street.
An approach to avoid this might be to improve the street accuracy
by alternative street databases or street detection which should
not be considered in this paper.

Figure 9: False positives and negatives due to incorrect co-
ordinates (blue - existing car, red - found car, yellow - found
truck)

3.2 Tracking

Figure 10: Correctness rate of tracks depending on the param-
eters σ and γ

We implemented the tracking algorithm as explained above by
using the vehicles distances on UTM-projection and the normed
correlation coefficient of all three color channels in a 20-by-20-
pixels window around them. As the images cover an area of 700
on 1000 meters with hundreds of cars each, it is not easy to show
how the whole set of tracks looks. That’s why only one street
was picked out for visualization. In fig.10 the resulting track-
ing rates depending on the parameters σ and γ are shown. As
one can see the best results we get if σ is between 20 and 30. If
the value is too small (σ = 5) the dependence of the positions
among each other is not respected enough. This results not only
in incorrect assigned pairs but also in crude mistakes by assign-
ing objects together which are located very far from each other.
This can strongly falsify the measured velocities. Furthermore γ
should neither be too small nor too high. The best results yield
values between 0.4 and 1.0. Around these settings a correctness
of more than 80 percent (best value 85.7%) is achieved.
As for the average velocities it is rather important to accept cor-
rect tracks than getting all vehicles tracked, after the SVD the
acceptance is bound to the correlation coefficient of a pairing. If
the pairing next to its ranking in row and column does not pass a
threshold for the CC, it is discarded although it might be correct.
In fig.11 the remaining tracks are shown. In the upper half of
the image 49 objects have been detected. 39 of them have been
detected in the lower half as well which means they are possible
to track. 36 of the objects have been assigned to another one, 30
of them were assigned correctly. After the thresholding with a
CC of 0.9 still 26 of the 36 tracks remain. So from end to end
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Figure 11: Tracked objects filtered by CC-threshold 0.9 (100%
correct)

only 53 percent (26 out of 49) of all detected objects are found
again and tracked, but with a correctness of 100 percent. Surely
there should be more tests with more representative numbers, but
we did not have enough reliable reference data yet. This will be
done in the near future.

4 CONCLUSIONS AND FUTURE WORK

In this paper we presented a car detecting and a tracking algo-
rithm which have been especially chosen and adapted to the given
situation, the flying traffic monitor ARGOS. It was shown how
they work and that they brought satisfying results depending on
the environmental conditions. Furthermore it was shown, where
the approach has problems and continuous work can be done.
Surely the system can be improved in some points and a few of
them should be given here. First of all the street accuracy prob-
lem which could be easily solved by using another database. And
it should be mentioned that there was already the attempt to use
the more accurate street database Atkis. On the one hand the co-
ordinates were indeed more exact and yielded slightly better de-
tection rates, but on the other hand the database divides the street
network into too small segments, which take a lot more time to
process one by one. Additionally the achieved data should be
mapped on Navteq segments, which would not be easy. So the
next step is to integrate the newest version of the Navteq database
being bought at the time.
Furthermore the edge detection could be optimized for example
by running it on the GPU, but it has not been considered so far.
Another idea is to compute the filtering in the frequency space.
The Fourier-transformed images and filters just have to be multi-
plied in frequency space and transformed back. The only prob-
lem is that the filters change with every street segment, so there
are four filters and four filtered images to be transformed ev-
ery time. The approach was already explored, but the Fourier-
transformation implemented in OpenCV needs longer than direct
convolution, because it uses floating point numbers.
Next to this the detected cars could be verified by a more ex-
pensive algorithm like a Bayesian Network or a Support Vector
Machine because some of the false positives do not look like a
car at all. So they would be easy to discard.
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ABSTRACT: 
 
Derivation of statistical traffic data is highly dependent on the balance of detection and false alarm rates. In case false alarms have 
not been eliminated in the initial detection phase, they are often subsequently tracked, though, resulting in trajectories that do not 
match the true traffic situation. This finally leads to derivation of erroneous traffic parameters within the individual road segments. 
In this paper, a method is described how to eliminate false alarms by evaluating the trajectories and velocities of a tracking 
procedure. Basically, two types of false alarms are considered which bias the statistics of traffic data: The first type deals with 
redundant detections that lead to multiple trajectories biasing the statistics. The second type comprises false alarms that belong to the 
static background inducing zero-velocity into the statistics. We show that the presented procedure is able to increase the total 
correctness of detection and tracking from 65% up to 95% which allows a much more precise calculation of traffic flow parameters. 
 
 

1. TRAFFIC MONITORING 

The task of collecting wide area traffic parameters plays 
important role in today’s traffic management. Aerial images 
offer a complement source to common measurement systems 
like induction loops and stationary video cameras. Besides 
giving a visual overview, image sequences which cover large 
areas can deliver a time snapshot of a spatially fully covered 
traffic situation of the recorded region. 
In recent years, traffic monitoring using air- and space images 
became more and more attractive mainly due to the availability 
of cost-effective and flexible high-resolution systems mounted 
on aircrafts, i.e. the LUMOS/ANTAR system for traffic 
monitoring (Ernst et al., 2003; Ernst et al. 2005; Ruhé et al., 
2007) or the 3K camera system (Kurz et al., 2007), or on HALE 
platforms and UAVs as presented in the Pegasus project 
(Everaerts et al., 2004). An extensive overview on recent 
developments is given, for instance, in (Stilla et al., 2005; Hinz 
et al., 2006; Lenhart et al., 2008). The following methods are 
especially designed for traffic monitoring with DLR’s 3K 
camera system. This system is able to capture image sequences 
with a frame rate of approx. 3Hz – 7Hz depending on the 
imaging mode (continuous imaging or bursts) with a spatial 
resolution of 20cm – 50cm depending on the flight height. 
Concepts for deriving traffic data from these aerial image 
sequences have been proposed in (Rosenbaum et al. 2008) and 
(Lenhart et al. 2008). The traffic parameters which are 
calculated from image sequences are namely the mean velocity 
and traffic density per road segment. The resulting parameters 
are then integrated into traffic flow models such as the DELPHI 
traffic portal illustrated in (Behrisch et al.). 
 
 

2. INFLUENCE OF FALSE ALARMS 

Detection methods as proposed in (Rosenbaum et al. 2008) or 
(Lenhart et al. 2008) deliver a detection quality of about 60% 
completeness and 65-75% correctness. False alarms are mainly 
caused by structures which appear similar to vehicles, like i.e. 
belonging to shadows, road banks etc.  

 
The influence of the false alarm rate on the calculation of 
generic traffic parameters can be studied using, e.g., Monte-
Carlo simulations. In the following experiment a dense traffic 
scenario on a multi-lane highway was captured with an image 
sequence and all car trajectories were manually measured in 
this sequence, eventually leading to mean velocity profiles for 
each lane of the highway. Then, a predefined percentage of 
detections were selected at random positions along the road and 
contaminated with a specific percentage of random false alarms. 
Based on these data the velocity profiles were calculated for 
each lane again and compared to the reference data. As the 
estimation of the velocity profile depends strongly on the 
randomly selected positions of the cars, these experiments have 
been carried out 10000 times, in order to gain a certain statistic 
about the quality of the estimated profiles. The following table 
summarizes the RMS values and standard deviations for the 
estimated velocity profiles depending on the respective 
detection and false alarm rate. 

 
50% detection rate
5% false alarm rate

50% detection rate 
10% false alarm rate 

50% detection rate
25% false alarm rate

RMS 
[km/h] 

σ  
[km/h] 

RMS 
[km/h] 

σ  
[km/h] 

RMS 
[km/h] 

σ  
[km/h] 

5.22 2.61 7.03 4.01 10.25 6.27 
 

30% detection rate
5% false alarm rate

30% detection rate 
10% false alarm rate 

30% detection rate
25% false alarm rate

RMS 
[km/h] 

σ  
[km/h] 

RMS 
[km/h] 

σ  
[km/h] 

RMS 
[km/h] 

σ  
[km/h] 

5.97 3.17 8.03 4.66 11.30 6.58 

Table 1: Monte-Carlo simulation of reconstruction of velocity 
profiles depending on detection and false alarm rates 

 
As can be seen, especially the false alarm rate highly influences 
the quality of the estimates. For instance, it is still possible to 
reconstruct the velocity profile up to 6km/h ± 3km/h at a 
detection rate of only 30% when keeping the false alarm rate at 
5%. 
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Figure 1: Detection result with false alarms. The red circle 

indicates redundant objects, the black mark shows 
objects belonging to the background. 

 
There are mainly two ways of how false alarms are being 
tracked (see example in Figure 1): 

• Collinear motion for redundant objects/features 
belonging to vehicles (trailer, car shadow or other). 

• With zero velocity if objects belong to the 
background (road bank, shadows of trees etc.) 

 
It is easy to see that these false alarm objects influence 
statistical traffic data in a manner that may lead to wrong 
conclusions of the traffic situation or to conflicts in model 
calculation. 
 
To demonstrate such influence, two examples shall be 
mentioned: 

• In a traffic scenario of a congestion where one lane 
moves slightly faster than the other (see Figure 2), 
false alarms belonging to (mainly larger) vehicles of 
the faster lane concurrently increase the derived 
density and raise the calculated average velocity. This 
obviously leads to a conflict in the traffic evaluation. 
If the false alarms belong to vehicles of the slower 
lane, the average velocity is lowered and thus 
implying an even higher vehicle density than there 
actually is. 

 
• Let us assume a snapshot of a real situation of free 

flowing traffic with 30 cars moving with an average 
velocity of about 60 km/h (which corresponds to the 
speed limit). By assuming 60% completeness and 
70% correctness, around 18 cars will be correctly 
detected and there will be 8 false alarms. In case that 
the false alarms belong to static background they will 
obtain a speed 0 km/h. This leads to a calculated 
average velocity of 41 km/h which implies rather 
dense traffic and thus feeding the traffic flow model 
with erroneous input data. 

 
 

 
Figure 2: Congested traffic situation with different velocity in 

each lane. 

Therefore, it is desirable to eliminate the false alarms of the 
initial detection to achieve a better quality of the calculated 
average velocity. 
 
 

3. CONCEPT OF REFINEMENT 

To improve the initial detection quality, we include generic 
knowledge about the velocity statistics and geometric layout of 
traffic flow in typical traffic situations (e.g. “free flowing”, 
“congestion”, “traffic jam”). To this end, we first track all 
initial detections and then eliminate the included false alarms 
based on an analysis of geometric layout and velocity of the 
trajectories.    
 
3.1 Summary of tracking procedure 

Initial vehicle candidates are extracted in the neighborhood of 
predefined road axes using a blob detection algorithm tuned for 
color images. Image triplets are then used for tracking, in order 
to gain a certain redundancy allowing an internal evaluation of 
the results. A vehicle image model is created by selecting a 
rectangle around a particular detection. By using the shape-
based matching algorithm (Steger, 2001), car hypotheses are 
found in the successive images. The matching procedure 
delivers matches in Image 2 and in Image 3. Then, new car 
image models are created at all hypotheses positions in Image 2 
and matched to Image 3. Of course, these matches may contain 
multiple match results. Finally, all results obtained in Image 3 
are checked for consistency including a smoothness criterion of 
the trajectory to determine the correct combination of the 
matches. A detailed explanation of this approach can be found 
in (Lenhart et al., 2008). 
  
The described tracking method is a very robust one delivering 
correct matches at about 99%, yet it tracks objects of any kind 
as long as their motion fulfills smoothness constraints similar to 
those of cars. Thus, trajectories of false initial detections are 
potentially tracked and also considered as “correct”. Based on 
the results of the tracking, the refinement is carried out. 
 
3.2 Elimination of redundant objects 

A first step to eliminate false detections is to remove redundant 
objects from the set of detections. These are the kind of objects 
that belong to vehicles, such as shadows or trailers. 
For each pair of detections, the spatial distance is calculated. A 
search for very small distances delivers candidates for 
redundant objects. Since candidates may also include vehicles 
within a passing maneuver, these candidates need to be 
analyzed for their trajectories. The analysis includes the speed 
and direction of the determined trajectories and relative 
direction between the candidates. Identical trajectories and 
constant relative direction indicates redundant candidates while 
passing vehicles will have at least a slight difference in their 
speed or relative orientation. 
 
It is now tested which of the redundant candidates is the car and 
which is the object to be eliminated. Therefore, a quick test of 
the gray or color value in the center of the objects is carried out. 
The darker and less colored object is assumed to be the shadow 
and is therefore eliminated from the set of detections. In case 
that both objects have a similar gray or color value, the trailing 
object is eliminated. 
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3.3 Knowledge representation of traffic situations 

In order to evaluate the velocities of the vehicles we need to 
formulate our knowledge and expectations about the typical 
traffic situations such as “free flowing traffic”, “congestions” or 
“traffic jams”. In dependence of the state of traffic and the 
location with respect to intersections or traffic lights, different 
interactions between vehicles occur. 
A well substantiated statistical concept like Bayes’ theorem 
would provide a sound basis for evaluation. However, 
determining the probability density functions is hardly feasible 
because extensive and sufficient samples are missing. Hence, it 
is advisable to avoid a concept that claims statistical integrity. 
In contrast to Bayes’ theorem, fuzzy logic offers an intuitive 
method to represent knowledge of classes by easy 
parameterization (Zadeh, 1965). It is also frequently applied for 
modeling car following behavior (Brackstone and McDonald, 
1999). Therefore, we decided to use fuzzy logic to describe our 
knowledge about traffic. 
 
3.3.1 3D fuzzy membership function for active vehicles 
Let us define a fuzzy set A that describes vehicles which are 
actively involved in traffic. Besides normally moving cars, 
these may be standing vehicles in traffic jams or waiting at red 
traffic lights or other crossroads. 
Since we are only interested in the possibility of an object 
belonging to A, we neglect the alternative set Ā of inactive 
objects which may be false alarms of the detection, parking 
vehicles or erroneous tracks. 
 
For the fuzzy set A, a membership function needs to be defined, 
indicating the possibility μA that a car belongs to A in 
dependence of its velocity v. However, μA also strongly depends 
on the traffic density D and the distance d from intersections. It 
is quite obvious, that in a free flowing situation in the middle of 
road segment the possibility that a car stands still is 0. In 
contrast to that, zero speed has a rather high possibility near 
intersections or in jam situations. In order to meet these 
different traffic situations, we have to consider the conditional 
possibilities μA(v|D,d). In the sequel, the units for the measures 
given shall be v [km/h], D [cars/km per lane] and d [m]. 
 
First, we should outline the ranges of D and d where μA may 
change significantly. A density of lower or equal to D = 30 
corresponds to free flowing traffic while a density of D = 180 
represents the maximum density of a traffic jam when there is 
almost no motion at all (Hall, 1999). Below 30, μA(v,D|d) 
remains constant. 
The interesting range for d is approximately between 150 
meters before an intersection because this describes the range 
where drivers start to brake and 50 meters behind the 
intersection where drivers accelerate until they reach their 
desired travel speed. Outside of the range of [-50m;150m], 
μA(v,d|D) is constant for all values of d. 
 
Over the entire space of v, D and d, this results in a 3D 
membership function μA(v,d,D). Please note that the values also 
depend on the road type, speed limits intersection layout. For 
different road conditions, different functions have to be 
developed. The mentioned example function refers to a major 
city road with multiple lanes with a speed limit of 60 km/h and 
an intersection with a road of equivalent type controlled by 
traffic lights. 
 
 

To create this 3D function, support points have to be selected. 
I.e., given an open traffic situation (D = 30) and long distance 
from an intersection (d = 150) the possibility of a vehicle 
moving with a speed between 0-20 km/h in shall be 0, while the 
possibility at the same position in the same traffic situation shall 
be 1 for velocities between 50-70 and becoming 0 again at v = 
100.  
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Figure 3: 1D membership functions given a traffic density D = 

0 and D = 180 respectively and distance d = 150 
with support points (black dots) 

 
 

 
Figure 4: 2D membership function at distance d=5, with 1D 

support functions (black lines) 
 

183

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 

A second function depicts a dense traffic situation at the same 
distance. The possibility for zero velocity shall be 0.5 (since 
jam cues more likely move slowly forward), while speeds of 
10-30 shall be most likely and speeds larger than 50 simply 
impossible. By linear interpolation between the support points, 
this results in the functions depicted in Figure 3. 
 
Assuming that the possibilities evolve linearly over the 
dimension of density, we can derive 2D functions given a 
certain distance. The function for a position right in front of an 
intersection is shown in Figure 4. 
 
By linear interpolation along the third axis d, we receive a cubic 
membership function (Figure 5). 
 

 
Figure 5: 3D membership function with slices at v=10, v=70, 

D=80, d=0 and d=100 
 
 
3.3.2 Evaluation of velocity information 
Before the evaluation of the speed, the road is split into sections 
of length 50m and, near to intersections, of only 20m (sees 
Figure 6). Every detected object is assigned to one section and 
contributes to the section density. After the determination of the 
section density, the possibility μA is derived from the above 
described 3D membership function for each object. 
 
The fuzzy possibility serves a weight in the calculation of a 
weighted average velocity for each section: 
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By applying a minimum threshold on the summed up weights 
of a section, we meet the circumstance that there are only false 
alarms in a free flow section. If the sum of the weights of a 
section is below the threshold, all detections of this section are 
removed. 
Finally, objects with a velocity 2i vv v σ< − ⋅  are regarded as 

outliers and eliminated. Then, a refined and unweighted average 
velocity is determined from the remaining detections. The 
resulting distribution is unbiased under the assumption that all 
false alarms have been eliminated. 
 

 
Figure 6: Velocity distribution and cutting-off criteria (red) per 

road section for each lane  
 
 

4. RESULTS 

The concept has been tested on two different sets of image data 
so far. The results are shown in Figure 7. One image shows a 
highway section with free flowing traffic. Here, the detection 
was carried out by a blob detection algorithm as explained in 
(Lenhart et al.). In this case, the refinement was able to 
eliminate all false alarms and redundant objects that arose from 
the automatic detection. 
The second image shows a more complex scene with an urban 
highway section and an exit leading to an intersection with a 
traffic light. In this case, the detection has been carried out 
manually, however, considering a reasonable detection 
characteristic and quality. In this example, 12 objects have been 
correctly removed, leaving only one false alarm that could not 
be eliminated due to faulty tracking.  
In both examples, the correctness of the detection could be 
significantly increased by approximately 30%. 
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Figure 7: Results of the refinement process. Green: detected and tracked vehicles; Black: redundant objects eliminated by trajectory 
analysis; Red: false alarms by velocity evaluation. Blue circle: false alarm which has not been eliminated. 

 
5. DISCUSSION AND OUTLOOK 

The presented concept shows a possibility to refine detection 
and tracking results by velocity and trajectory evaluation. 
This allows a more precise derivation of the average velocity 
which is fed into traffic models. The benefit of this concept 
affects exclusively the calculation of the average velocity. It 
is not possible to counter the problem of low completeness, 
since missed hits cannot be recovered. However, as has been 
shown by the simulation in Sect. 2, a low false alarm rate is 
essential for extrapolating the detection results. For low 
detection rates, traffic flow parameters can still be estimated 
with reasonable quality if the false alarm rate is small 
enough. 
Still, many more test scenes have to be evaluated in order to 
give a more precise measure for the potential of this method. 
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ABSTRACT: 

 

Airborne laser scanning (ALS) of urban regions is commonly used as a basis for 3D city modeling. In this process, data acquisition 

relies highly on the quality of GPS/INS positioning techniques. Typically, the use of differential GPS and high-precision GPS/INS 

postprocessing methods are essential to achieve the required accuracy that leads to a consistent database. Contrary to that approach, 

we aim at using an existing georeferenced city model to correct errors of the assumed sensor position, which is measured under non-

differential GPS and/or INS drift conditions. Our approach accounts for guidance of helicopters or UAVs over known urban terrain 

even at night and during frequent loss of GPS signals. We discuss several possible sources of errors in airborne laser scanner systems 

and their influence on the measured data. A workflow of real-time capable methods for the segmentation of planar surfaces within 

ALS data is described. Matching planar objects, identified in both the on-line segmentation results and the existing city model, are 

used to correct absolute errors of the sensor position. 

 

 

1. INTRODUCTION 

1.1 Problem description 

Airborne laser scanning usually combines a LiDAR device 

(light detection and ranging) with high-precision navigational 

sensors (INS and differential GPS) mounted on an aircraft. 

Range values are derived from measuring the time-of-flight of 

single laser pulses, and scanning is performed by one or more 

deflection mirrors in combination with the forward moving 

aircraft. The navigational sensors are used to obtain the 3D 

point associated with each range measurement, resulting in a 

georeferenced point cloud of the terrain. A good overview and a 

thorough description of ALS principles can be found in (Wehr 

& Lohr, 1999). Laser scanning delivers direct 3D measurements 

independently from natural lighting conditions, and it offers 

high accuracy and point density. 

 

A well-established application of laser point clouds acquired at 

urban areas is the generation of 3D city models. However, the 

overall precision of the derived city model highly depends on 

the accuracy of the data input, which is directly dependent on 

the exactitude of the navigational information. Great efforts are 

usually required during data acquisition and postprocessing in 

order to achieve high fitting accuracy of multiple ALS datasets 

(e.g. neighboring strips). While ALS data acquisition is 

commonly done to supply other fields of studies with the 

necessary data, few examples can be found where laser scanners 

are used directly for pilot assistance. One of these examples is 

the HELLAS obstacle warning system for helicopters (Schulz et 

al., 2002), which is designed to detect wires and other obstacles 

for increased safety during helicopter missions. 

 

Despite increasing performance of LiDAR systems, most remote 

sensing tasks that require on-line data processing are still 

accomplished by the use of conventional CCD or infrared 

cameras. Typical examples are airborne monitoring and 

observation devices that are used for automatic object 

recognition, situation analysis or real-time change detection. 

Utilization of these sensors can support law enforcement, 

firefighting, disaster management, and medical or other 

emergency services. At the same time, it is often desirable to 

assist pilots with obstacle avoidance and aircraft guidance in 

case of poor visibility conditions, during landing operations, or 

in the event of GPS dropouts. Three-dimensional information as 

provided by the LiDAR sensor technology can ease these tasks, 

but the existence of differential GPS ground stations and the 

feasibility of comprehensive data analysis are not to be 

considered for these real-time operations. 

 

1.2 Overview 

The approach of using ALS information to provide on-line 

navigation support for aircraft guidance over urban terrain is 

opposite to the process of city model generation. In contrast to 

the demand for high-precision positioning techniques, it is 

assumed that a proper georeferenced city model is already 

available. This database can be used to generate a synthetic 

vision of the terrain according to current position and 

orientation of the aircraft. Moreover, ALS measurements and 

matching counterparts in the city model can be taken into 

consideration if additional navigational information is needed, 

for example in cases of degraded GPS positioning accuracy. 

 

This paper presents a workflow of methods for the segmentation 

of planar surfaces in ALS data that can be accomplished in line 

with the data acquisition process. Since most of currently used 

airborne laser scanners, like the RIEGL LMS-Q560, measure 

range values in a pattern of parallel scan lines, the analysis of 

geometric features is performed directly on this scan line data. 

Straight line segments are first segmented and then connected 

across consecutive scan lines to result in planar surfaces. All 

proposed operations are applicable for on-line data processing.  
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Preparatory work regarding the existing database is required in 

order to exploit the on-line segmentation results in a pilot 

assistance system. A set of planar surfaces characterizing the 

urban terrain is needed for the later comparison (e.g. facades, 

rooftops). In our experiments, even this information originated 

from previously collected ALS data, which were recorded under 

optimal DGPS conditions, but it might as well be derived from 

any other existing city model. 

 

Within our approach, we assume that INS navigation is 

continuously available and that we have an initial guess of the 

sensor position (e.g. from non-differential GPS). If we have to 

navigate through GPS dropouts, the positioning accuracy will 

degrade because of INS drift effects, but we can assume that the 

measured ALS data are still roughly aligned to the stored 

information. In addition to their position in 3D space, features 

like size and normal direction are assigned to all segmented 

planar patches, thus it is comparatively easy to find 

corresponding objects in the database. We use this information 

to achieve precise alignment between the measured ALS data 

and the existing city model, which finally enables us to correct 

the presumed sensor position. 

 

1.3 Related work 

In recent years, airborne laser scanning systems have been 

explored by various scientists from different points of view. The 

complexity of ALS data acquisition leads to a number of 

potential error sources. Schenk (2001) and Filin (2003) address 

this problem and categorize different influences that should be 

considered. In addition to varying exactness of the navigational 

information sources, several systematic effects can lead to 

reduced point positioning accuracy. Exemplary limiting factors 

are scanning precision and range resolution of the specific laser 

scanning device. Other negative effects can be introduced by 

inaccurate synchronization of the system components. 

Considerable discrepancies are caused by mounting errors or 

disregarded lever arms (displacements between laser scanner, 

INS, and GPS antenna). Skaloud and Lichti (2006) approached 

this problem with a rigorous method to estimate the system 

calibration parameters such that 3D points representing a plane 

are conditioned to show best possible planarity. In order to use 

ALS within the scope of aircraft navigation, we presuppose that 

the sensor system has been calibrated beforehand.  

 

Some procedures described in this paper are concerned with the 

segmentation of point clouds into planar surfaces. Many 

different methods regarding this topic can be found in literature. 

Some authors are interested in detecting even more kinds of 

objects like spheres, cylinders, or cones. Rabbani et al. (2007) 

describe two methods for registration of point clouds, in which 

they fit models to the data by analyzing least squares quality 

measures. Vosselman et al. (2004) use a 3D Hough transform to 

recognize structures in point clouds. Filin & Pfeifer (2006) 

propose a segmentation method that is based on cluster analysis 

in a feature space. Among all available approaches, the 

RANSAC algorithm (Fischler & Bolles, 1981) has several 

advantages to utilize in the shape extraction problem (Schnabel 

et al., 2006). We apply a RANSAC-based robust estimation 

technique to fit straight line segments to the scan line data. 

Moreover, an extension of this method is used to identify 

locally planar patches in the model data. The amount of outliers 

lets us distinguish between buildings and irregularly shaped 

objects like trees. Fundamental ideas on fast segmentation of 

range data into planar regions based on scan line analysis have 

been published by Jiang and Bunke (1994). Their algorithm 

divides each row of a range image into straight line segments 

which are combined in a region growing process. Despite the 

fact that we are considering continuously recorded scan lines 

instead of range images, we basically follow this approach 

during the on-line data analysis. 

 

Several existing concepts of terrain-based navigation for aerial 

vehicles can be found, e.g. image based navigation (IBN), 

terrain-following radar (TFR), or terrain contour matching 

(TERCOM). Other than these methods, laser scanning is a 

comparatively new technique. Toth et al. (2008) propose the use 

of LiDAR for terrain navigation, as it provides distinct 3D 

measurements that can easily be used for exact comparison to 

previously recorded data. In their concept, the iterative-closest-

point algorithm (Besl & McKay, 1992) is chosen for surface 

matching. Instead of an ICP approach, we identify matching 

planar objects with regard to several geometric features (i.e. 

position, size, normal direction). Similar methods have 

demonstrated high performance for markerless TLS registration 

(Brenner et al., 2008). The problem of determining the 

transformation parameters is transferred to a system of linear 

equations that can be solved immediately.  

 

2. EXPERIMENTAL SETUP 

Data used for this study were collected during a field campaign 

in 2008, using the sensor equipment that is briefly described in 

this section. 

 

2.1 Sensor carrier  

The sensors described below have been attached to a helicopter 

of type Bell UH-1D (Figure 1). Laser scanner and IMU are 

mounted on a common sensor platform at the side of the 

helicopter, which can be tilted to allow different perspectives, 

i.e. nadir or oblique view. In an operational system, the pilot 

must be able to react to upcoming dangers, e.g. during degraded 

visibility conditions. Therefore, an obliquely forward-looking 

sensor configuration was used in our experiments. The lever 

arms of the components in the system are known, and the 

correct bore-sight angles have been determined. Calibration of 

these parameters is not topic of this paper, suitable methods can 

be found in (Skaloud & Lichti, 2006).  
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Figure 1. Sensor carrier and sensor configuration. 

 

2.2 Laser Scanner 

The RIEGL LMS-Q560 laser scanner makes use of the time-of-

flight distance measurement principle with a pulse repetition 

rate of 100 kHz. Opto-mechanical beam scanning provides 

single scan lines, where each measured distance can be 

georeferenced according to position and orientation of the 

188

       CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 

sensor. Waveform analysis can contribute intensity and pulse-

width as additional features, but since we are mainly interested 

in fast acquisition and on-line processing of range 

measurements, we neglect full waveform analysis throughout 

this paper. Range d under scan angle α (Figure 1) is estimated 

corresponding to the first returning echo pulse as it can be 

found by constant fraction discrimination. Typically, each scan 

line covers a field of view of 60° with 1000 range measurements 

(d,α) that can be converted to 2D Cartesian coordinates 

(Figure 6). Navigational data are synchronously assigned to the 

range measurements for direct georeferencing. 

 

2.3 Navigational sensor system  

The Applanix POS AV 410 comprises a GPS receiver and a 

gyro-based inertial measurement unit (IMU), which is the core 

element of the inertial navigation system (INS). The GPS data 

are used for drift compensation and absolute georeferencing, 

whereas the IMU determines accelerations with high precision. 

These data are transferred to the position and orientation 

computing system (PCS), where they are fused by a Kalman 

filter, resulting in position and orientation estimates for the 

sensor platform. In addition to the real-time navigation solution, 

specialized software can be used for accurate postprocessing of 

the recorded navigational data. Applanix POSPac MMS 

incorporates the use of multiple DGPS reference stations and 

the import of precise GPS ephemeris information. We consider 

this corrected navigation solution while generating an optimal 

database of the urban terrain. 

 

3. USED METHODS AND DATA PROCESSING 

In this chapter, we distinguish two different operating modes of 

ALS data acquisition and processing. First, we assume that we 

have optimal settings for creation of an adequate database: the 

relevant urban area can be scanned several times from multiple 

aspects with a calibrated sensor, and data can be processed and 

optimized off-line. During this stage, we can resort to own 

differential GPS base stations or use according information, e.g. 

provided by the “Satellite Positioning Service of the German 

State Survey” (SAPOS). Under these conditions, the absolute 

measurement accuracy of an ALS system is typically in the 

order of one decimeter (Rieger, 2008). 

 

  
(a) (b) 

 

Figure 2. Horizontal cross-section of a building in overlapping 

point clouds: (a) after INS/DGPS postprocessing, 

(b) using the real-time navigation solution. 

 

In the second mode of ALS operation, the data is used for on-

line navigation updates during helicopter missions. At this time, 

we expect non-differential GPS conditions, GPS dropouts, and 

loss of data points due to smoke, fog, or other negative 

influences. Figure 2 shows the accuracy that can be obtained in 

the different operating modes. ALS data in this example were 

acquired at a skew angle of 45 degree (forward-looking). The 

helicopter approached the same urban area from six different 

directions, and the resulting 3D points were combined into a 

single point cloud. Both illustrations depict the aggregated data 

within the horizontal cross-section of a building in the overlap 

area. Best accuracy as shown in Figure 2a results from a global 

optimization of the navigational data with the Applanix 

postprocessing software. In this example, the data of six DGPS 

ground stations were taken into account. Compared with this 

accuracy, discrepancies of several meters can occur if the real-

time navigation solution is used (Figure 2b). This situation will 

even get worse in case of GPS dropouts. 

 

3.1 Automatic generation of an adequate database 

The intended utilization of LiDAR sensors for aircraft guidance 

does not require a highly detailed GIS. We limit the creation of 

a database to the extraction of planar patches in multi-aspect 

ALS point clouds of the relevant urban area. As mentioned 

before, these data should be collected under optimal conditions 

(Figure 2a). The combined complete 3D point cloud contains 

information concerning all facades and rooftops of buildings. A 

workflow of off-line processing methods is used to filter points 

and extract most of the planar objects. The respective flowchart 

is illustrated in Figure 3.  
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Figure 3. Flowchart of the model creation. 

 

Merging of several multi-aspect ALS data sets results in an 

irregularly distributed 3D point cloud. We introduce a k-d tree 

data structure to handle automatic processing of these data. The 

search for nearest neighbors can be done very efficiently by 

using the tree properties to quickly eliminate large portions of 

the search space. 

 

The subsequent segmentation method is intended to keep only 

those points that are most promising to represent parts of 

buildings. At first, we remove all ground points by applying a 

region growing technique in combination with a local analysis 

of height values. We search for sections of the point cloud in 

which the histogram of height values clearly shows a 
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multimodal distribution. There, laser points at ground level 

appear as the lowest distinct peak. Such positions are then used 

as seed points for the region growing procedure, which collects 

all points falling below a certain slope. The necessary search 

operations are accomplished by means of the k-d tree data 

structure. In general, this method may misclassify some points 

(e.g. inner courtyards), but this is negligible for our application. 

An overview of advanced methods for bare-earth extraction can 

be found in (Sithole & Vosselman, 2004). 

 

The main step of the model creation is the extraction of planar 

features from the remaining 3D points. Remarkably, the applied 

segmentation method is almost identical to the algorithm used 

for detection of straight line segments in the scan line data, 

except for the terms line/plane and the different data structure. 

Similarly, geometric features of the extracted shapes have to be 

computed in both the model and the on-line results. These 

topics are described in sections 3.2 and 3.4, respectively. 

Figure 4 gives an impression of the derived model data. The 

underlying point cloud is composed of four partial scans of the 

terrain (different aspects). 

 

 
 

Figure 4. Partial view of the database (model) with ground level 

(blue) and identified planar patches (red). 

 

3.2 Scan line analysis of airborne LiDAR data 

During on-line processing, the analysis of geometric features is 

performed directly on the scan line data. Most parts of typical 

buildings will appear as local straight line segments in the 2D 

Cartesian representation, even if the airborne laser scanner is 

used in oblique configuration (Figure 1). The RANSAC 

technique is used to locally fit straight line segments to the scan 

line data. As mentioned in section 3.1, the algorithm described 

below can be modified to accomplish segmentation of planar 

surfaces in a 3D point cloud. This is simply done by replacing 

the scan line index with the k-d tree data structure, and by 

turning attention to 3D planes instead of 2D lines. 

 

An overview of the proposed method is shown in Figure 5. 

Within each iteration step, we randomly select a position in the 

array A of scan line data points and try to fit a straight line 

segment to the neighboring data. The RANSAC technique 

provides a robust estimation of the line segment’s parameters. If 

the fitted straight line is of poor quality, the data associated with 

the current position is assessed as clutter. Otherwise, we try to 

optimize the line fitting by looking for all data points that 

support the previously obtained line, which is done in steps (9), 

(10), and (11). These steps actually represent a “line growing” 

algorithm. The local fitting of a straight line segment is repeated 

with the supporting points to get a more accurate result. The 

end points of each line segment can be found as the 

perpendicular feet of the two outermost inliers. Figure 6 shows 

detected straight lines for an exemplary scan line, depicted with 

a suitable color-coding according to the normal direction. 

 

 (1) Choose an unprocessed position i at random among the 

available scan line data in the array A. 

(2) Check a sufficiently large interval around this position i for 

available data, resulting in a set S of 2D points. 

(3) Set the counter k to zero. 

 (4) If S contains more than a specific number of points, go to 

(5). Otherwise mark this position i as discarded and go to 

step (14). 

(5) Increase the counter k by one. 

(6) Perform a RANSAC-based straight line fitting with the 2D 

points in the specified set S. 

(7) If the number of inliers is low, mark the current position i 

as discarded and go to step (14). 

(8) Obtain the Hessian normal form L: (x-p)·n0 = 0 and push 

the current position i on a stack (LIFO). 
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(9) Pop the first element j off the stack. 

(10) Check each position in an interval around j, which has 

not already been looked at, whether the respective 

point lies sufficiently near to the straight line L. If so, 

push its position on the stack and include the 2D point 

in a new set S‘. 

(11) While the stack is not empty, go to (9). Otherwise 

continue with step (12). 

(12) If the counter k has reached its predefined maximum (e.g. 

two cycles), mark all positions of points in S‘ as processed 

and determine the regression line to S‘. Store the 

perpendicular feet of the two outermost points to define 

the straight line segment and go to step (14). Otherwise 

continue with (13). 

(13) Go to step (4) with the new set of points S:=S‘. 

(14) Repeat from (1) until all points are classified. 

 

Figure 5. Procedure for RANSAC-based shape extraction 

(example: detection of lines in a set of 2D points).  
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Figure 6. Detected straight line segments in a typical scan line. 

 

3.3 Grouping of line segments 

The end points of each line segment are georeferenced to result 

in correct positioned straight 3D lines. In this section, we 

describe a procedure to connect coplanar line segments of 

consecutive scan lines. Let Pi, Pj, and Pk be three of the four 

end points of two line segments in different scan lines. The 

distance of the fourth end point Pm to the plane defined by the 

three others is a measure of coplanarity. We define a distance dp 

as the sum of all four possible combinations: 
 

      

   4

:
   


  



T

i m i j i k

p

i j i k

d
p p p p p p

p p p p

 (3.1) 

 

The algorithm to find corresponding line segments in a 

sequence of scan lines can be summarized as follows: 
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(1) Select the next line segment a in the current scan line. 

(2) Set the label of a to a new and increasing labeling 

number. 

(3) Successively compare line segment a to each line 

segment b of several previous scan lines. If Euclidean 

distances, disparity of normal direction, and the measure 

of coplanarity dp are found to be smaller than predefined 

thresholds, go to step (4). Otherwise go to step (5). 

(4) Set the label of a to that of b. 

(5) Continue with (1) until all line segments a are processed. 
 

The above steps summarize the main ideas of our method. In 

fact, we apply an extended two-pass approach to improve 

detection of connected components. More details on this topic 

can be found in (Hebel & Stilla, 2008). Figure 7 illustrates the 

procedure. First, each line segment is initialized with a unique 

label. Coplanar line segments that are found to lie near to each 

other are linked together by labeling them with a common 

labeling number. This process is repeated until all new line 

segments are labeled. Surfaces are represented by the emerging 

clusters of line segments with the same label (Figure 8). 

 

 
 

Figure 7. Illustration of scan line grouping. 

 

 
 

Figure 8. Result of scan line grouping for measured ALS data. 

 

3.4 Feature extraction 

Each cluster of connected straight line segments can be 

characterized by a set of features which are described in this 

section. For a given cluster of connected line segments, let C 

denote the set of associated 3D data points. The centroid of C 

can be computed as the sum of all points divided by their 

number, and C can be translated towards the origin: 
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The eigenvectors of the covariance matrix C0
tC0 are the 

principal components of C. The normal direction n0 is given as 

the normalized eigenvector that corresponds to the smallest 

eigenvalue. The value of the smallest eigenvalue λ0 of the 

covariance matrix, divided by the number of points, is 

influenced by the curvature and the scatter of C. If it is near 

zero, this indicates a planar surface. The features used to 

identify matching surfaces in the model data and the results of 

scan line analysis are: centroid, normal direction, and the 

normalized eigenvalues of the covariance matrix. These features 

can even be used to classify and remove irregularly shaped 

surfaces, e.g. the ground level in Figure 8. 

 

3.5 Registration of ALS and model data 

Even without considering terrain-based navigation, we assume 

that the sensor position is known approximately with standard 

GPS accuracy. In case of GPS dropouts, the IMU drift will not 

distort the positioning exactness dramatically. The relative 

accuracy provided by the INS measurements still ensures 

consistent ALS measurements over limited periods of time, 

depending on the quality of the INS system. In some situations, 

the absolute navigational accuracy needs to be improved. 

Examples are low-altitude flights of helicopters at night or 

preparation of landing approaches during rescue missions at 

urban areas. 

 

If the helicopter is equipped with a LiDAR sensor, ALS data 

can be collected for several seconds in order to scan the urban 

area in front of the helicopter (Figure 8). Surfaces that are 

instantaneously detected in these data can be compared and 

matched to the existing database of the terrain (Figure 4). The 

features that are used to establish links have been described in 

section 3.4. First, the displacement of the centroids has to fall 

below a maximum distance. Second, the angle between the 

normal directions should be small (e.g. <5°). Third, the 

normalized eigenvalues of the covariance matrix C0
tC0 should 

be similar. Large planes are likely to be subdivided into 

dissimilar parts, but we are not interested in finding 

counterparts to all planes. It is sufficient to have some (e.g. 20) 

correct assignments. Figure 9 illustrates an exemplary pair of 

associated surfaces. The offset in position and orientation 

indicates the inaccuracy of the navigational data. 

 

nM
nD

cD

 
 

Figure 9. A pair of corresponding planes in model M and 

currently acquired ALS data D. 

 

In this section, we determine a rigid transformation (R,t) to 

correct these discrepancies. Let EM denote the planar surface of 

the model M that is associated with the plane ED in the currently 

collected ALS data D. The respective Hessian normal form of 

these planes is given by the centroids and the normal directions 

nM, nD (Figure 9). Since both planes should be identical after 

registration, the centroid of ED should have zero distance to EM. 

Moreover, the two normal vectors should be equivalent if they 

are normalized to the same half space. In addition to these 

conditions, we can assume that errors of orientation will not 

exceed the range of ±5°. That enables us to linearize the 

equations: 
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The rotation angles (α1, α2, α3) and the translation components 

(t1, t2, t3) are the six variables to be determined. Each 

corresponding pair of planes ED, EM yields two linear equations 

(3.3), therefore at least three pairs have to be identified in the 

data to compute the rigid transformation (R,t). In general, more 

correspondences can be found at urban areas. The resulting 

overdetermined system can be solved approximately by 

inverting the normal equations. In addition, the area of the 

planar patches can be used as a weighting factor. Finally, the 

corrected position of the sensor in the model coordinate system 

is given as R·pGPS+t and the orientation is corrected to R·RIMU. 

 

4. EXPERIMENTS 

We tested the proposed methods on the basis of real sensor data 

which were recorded 300 meters above the old town of Kiel, 

Germany. Data available from four flights over this urban 

terrain led to the database shown in Figure 4. Additional two 

flights were considered to prove the concept of terrain based 

navigation (Figure 8). For this purpose, 1000 randomly chosen 

displacement vectors in the range [5 m, 20 m] were added to the 

exact sensor positions and it has been checked if these offsets 

are corrected automatically. Figure 10 shows the average 

displacement between calculated and exact sensor position 

against the number of matching pairs of planes. With our data, 

we were able to reduce the average offset in sensor position to 

1.5 m if at least 25 pairs of associated surfaces can be found 

(standard deviation: 0.5 m). These numbers most likely depend 

on additional conditions, e.g. aircraft altitude, aircraft speed, 

number and orientation of facades and rooftops. 

 

 
 

Figure 10. Average displacement against number of planes. 

 

5. CONCLUSION AND FUTURE WORK 

The examples presented in this paper were obtained with an 

experimental sensor system, for which data analysis can only be 

done offline to show the feasibility of the proposed approach. 

Nevertheless, we guess that all computations can be 

accomplished in real-time, with an efficient implementation and 

appropriate hardware. In our experiments, we were able to align 

the model and the ALS data such that matching objects show an 

average distance of 8 cm after the registration. This absolute 

exactness is not necessarily transferable to the sensor position 

(see Section 4). With a larger distance between helicopter and 

the terrain, impreciseness of the sensor orientation has a 

considerably higher impact on the overall displacement. For 

example, an angular error of 0.1° would lead to a shift of 1 m in 

a distance of 600 m. The absolute exactness of the estimated 

sensor position improves significantly when considering larger 

areas and/or shorter ranges, e.g. when approaching the terrain at 

low altitude. In future work, we will analyze these influences in 

more detail, and we will focus on on-line change detection. 
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ABSTRACT

In this paper we evaluate the quality of vote-based retrieval using SIFT descriptors in a database of street view photog-
raphy, a challeging context where the fraction of mismatched descriptors tends to be very high. This work is part of the
iTowns project, for which high resolution street views of Paris have been taken. The goal is to retrieve the views of a
urban scene given a query picture. We have carried out experiments for several techniques of image matching, including
a post-processing step to check the geometric consistency of the results. We have shown that the efficiency of SIFT based
matching depends largely on the image database content, and that the post-processing step is essential to the retrieval
performances.

1 INTRODUCTION

In this paper, we evaluate the effectiveness of a voting strat-
egy using SIFT descriptors for near-duplicate retrieval of
urban scenes. We have observed that, compared to previ-
ously repported applications of SIFT (object recognition,
stereoscopy, etc.) (Lowe, 2003) this context presents the
challenge of a very high rate of descriptor mismatches,
due to the complexity of both the scene and the transfor-
mations it might suffer. We have thus, evaluated how dif-
ferent strategies to filter out the false matches can improve
the effectiveness of retrieval.

This study is part of the iTowns project, which is about
defining a new generation of multimedia web tools that
mixes a broadband 3D geographic image-based browser
with an image-based search engine 1. Fig. 1 shows an ex-
ample of pictures taken for the project.

The first goal of the new type of search engine, is to re-
trieve, in the high-resolution database, the scene correspond-
ing to a given query image. Let us imagine the following
scenario: a user is looking for information about a restau-
rant in front of him (feedback from patrons, for instance).
He takes a picture of the restaurant with his phone and send
it to the iTowns web server. The image is matched on the
database and the desired information is retrieved and sent
back to the user.

In order to accomplish this goal, there is basically three
steps to perform :

1. Match the query image with the corresponding scene
in the database.

2. Find information associated with the scene and re-
lated to the query.

1See http://itowns.ign.fr

3. Retrieve only relevant information regarding the user
interests.

In this paper, we focus on the first part, and consider the
use of state of the art techniques for near-duplicate image
matching. Recently, techniques have been developed for
the detection of copies where transformations between im-
ages are well known (rotation, scaling, global illumination
change etc). Those techniques involve the extraction of
points of interest in the images, then the matching of the
points in the query with the points in the database, and the
aggregation of the matches for images of the database us-
ing a voting strategy. We try to extend these techniques
to the matching of images with less constrainted, and thus
more realistic transformations (change of viewpoint, local
illumination, etc).

The paper is organized as follows: the next section intro-
duces keypoint-based image matching. We explain in sec-
tion 3 the strategy used to perform an efficient approximate
k-NN search in the database in order to associate query
points with points in the database. Then, we detail in sec-
tion 4 the geometrical consistency used to filter irrelevant
matches. Experiments are done on two representative sub-
sets of the iTowns collection, and results are shows in sec-
tion 5, before we conclude.

2 KEYPOINTS BASED IMAGE MATCHING

The essential elements of keypoint-based image matching
appeared in (Schmid and Mohr, 1997): the use of points of
interest, local descriptors computed around those points, a
dissimilarity criterion based on a vote-counting algorithm,
and a step of consistency checking on the matches before
the final vote count and ranking of the results. We use
the SIFT points of interest (Lowe, 2003) to describe the
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Figure 1: Panoramic view of the Place de la Nation from the project iTowns.

image (Fig. 2). The SIFT descriptor consists in a 128-
dimensional vector containing a set of gradient orientation
histograms.

Figure 2: SIFT points of interest with respecting scales.

The classic method to use keypoints for image matching is
pair-wise image comparison. For all points of a query im-
age A, find the best matching point in a target image B. If
the resulting match has good contrast (i.e. the distance of
the query point to the best point in B is far less than the dis-
tance to the second best, meaning that the query point has
only one corresponding target point), add a vote to B. An
example of matching points is shown on Fig. 3. The best
image in the database corresponding to the query image is
the one with higher votes.

Figure 3: SIFT points matching between a query taken
with a mobile phone and an image from the iTowns
database.

One of the problems of pair-wise image comparison is that

it induces a sequential, linear-time, processing, which is
unfeasible for large databases. Hence, instead of finding
best matches between keypoints of query and target im-
ages, the best matches are found between the query and
the keypoints in the entire collection. The retrieval scheme
is as follows :

1. For each points in the query, find the k-nearest neigh-
bours (k-NN) in the database.

2. For each neighbour found, add one vote to the corre-
sponding image.

3. Rank image by descending number of votes.

The main difference with pair-wise comparison is that each
keypoint of the query has k associated matches. Thus,
points of the query with no corresponding points in the
database (points of objects that are not in the database for
instance) will still vote. Those votes are randomly dis-
tributed among images and thus contribute to increase the
ranking of irrelevant images.

In order to remove the influence of those irrelevant points,
a geometrical constraint is applied to the matches, remov-
ing points in the target that are not coherent with the spatial
distribution of points in the query.

3 APPROXIMATE K-NN SEARCH

There are several techniques for efficient kNN search on
large databases, like the KD-tree (Friedman et al., 1976),
the LSH (Indyk and Motwani, 1998) or projective methods
(Kleinberg, 1997). A comprehensive study can be found in
(Valle, 2008). Those methods are all approximate because,
in order to obtain more efficiency they sacrifice exactness
in the name of speed. That means that they find the correct
answers with good probability, but not certitude.

We have chosen Multicurves (Valle et al., 2008), a method
based on space-filling curves, which are fractal curves able
to map the dimensions of the input space into an one-dimen-
sional space, while locally preserving the order (i.e., putting
near in the curve point which are near in the space). The
one-dimensional data can then be indexed using traditional
efficient techniques.

The particularity of Multicurves is using several of those
curves at once: first, it projects the input space into a few
moderate-dimensional subspaces, then it uses one space
filling curve to index each one of those subspaces. This
allows the method to better manage the problems associ-
ated to high-dimensional indexing. In our experiments, we
have used Multicurves with 4 curves, each of them index-
ing 32 of the 128 dimensions that compose the SIFT input
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space. Details of the method as well as its evualuation for
copy detection can be found in (Valle et al., 2008).

Each keypoints of the database within the k-NN is added to
the list of matches of the image it belongs. A basic method
to retrieve images corresponding to the scene is to rank
the images by descending order of the size of the lists of
matches.

4 GEOMETRICAL CONSISTENCY

Since every point of the query is associated with many
points in the database, irrelevant points of the query will
still influence the ranking. However, we can make the as-
sumption that for those matches, the relative positions of
the query and target points within their respective images
are not coherent.Thus, a geometric constraint over the en-
semble of matches between two images shall be able to
remove the irrelevant matches.

We test two criteria of geometrical consistency. The first
criteria is to estimate the 2D affine transform between the
two images, and then to remove the points not coherent
with it. Although the transformation between the images is
indeed 3D, we assume that under small perspective changes,
a 2D affine transform is enough to catch the transforma-
tion of a single plane (in our case, the front of the build-
ing). The algorithm used to estimate the affine transform
is RANSAC, a model estimation technique which can deal
with a large fraction of outliers (Fischler and Bolles, 1981).
An example of matches after the removal of non-coherent
points is shown on Fig. 4.

Figure 4: Matching points after the non-coherent to the
estimate 2D affine transform matches have been remove.

The second criterion is to keep only the matches which
correspond to the most frequent angle difference between
matched points (Jegou et al., 2008). This is done by com-
puting an histogram of the difference between the principal
direction of the query and the target point of a match. We
then keep the matches corresponding to the most frequent
value in the histogram.

5 EXPERIMENTS

5.1 Protocol

We have tested four methods for comparison on two subset
of the iTowns images, namely:

• A pairwise matching using a distance contrast crite-
rion (named Image Matching there after).

• A k-NN search plus a vote (named Brute vote).
• A k-NN search plus the angle differences consistency

criterion (named Angle differences).
• A k-NN search plus the 2D affine transform consis-

tency criterion (name Ransac).

We set k = 10 for the k-NN Search. The parameters for
the RANSAC algorithm were empiricaly set to 15 pixels
maximum distance to fit the model and minimum 3 inliers
for the affine transformation.

The first dataset consisted of 82 images of a single street
(about 350 000 keypoints). The query set contained im-
ages taken by a mobile phone in front of some of the shops
in the street. As the images (both in the query set and in the
database) are direct views of the buildings, we considered
this test as easy, since the transformation between query
and its corresponding target images is simple. The second
dataset contained 300 images of a large boulevard (about
3.5 millions of keypoints). The queries where taken with
a mobile phone from the sidewalk. As the vehicle taking
the pictures was in the middle of the street, the targeted re-
gions of the images (a shop, for instance) are very small.
Thus, few keypoints of each image are describing some-
thing we might be looking for. As there are many severe
transformations (scaling, viewpoint changes), we consider
this test difficult. For both sets, we have manually built
the groundtruth by annotating which images correspond to
each query.

We have used three criteria for the evaluation. The first
consisted in measuring the rank of the first relevant image
retrieved (average of the query set). The second measure
was the evolution of the number of relevant image in the
retrieved set, as the size of this set increased. The third
criterion was the precision, the number of relevant images
retrieved over the number of images retrieved.

5.2 Results on Dataset 1

An example of the first images retrieved using the Brute
vote is shown on Fig. 5. The first images retrieved with
this technique have about 2000 matching keypoints (im-
ages in this set contain about 5000 keypoints). There are
several occlusions between the query image and the im-
ages of iTowns (for instance the car in front of the shop).
However, a relevant image is found within the first images.

Fig. 6 presents the same result, but with the Angle dif-
ferences refinement. The first images retrieved have about
200 matching keypoints. As we can see, the refinement
introduced a re-ranking of the first images profitable to
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Figure 5: First images retrieved using Brute vote. The
query has a dark red border, while relevant images have
a bright green border.

the relevant image. The same query but with the Ransac
method is shown on Fig. 7. Images retrieved have less
than 10 matching keypoints. The removal of non-coherent
points increases the ranks of relevant images. The im-
provement is thus better than the one of the Angle differ-
ences refinement.

Figure 6: First images retrieved using the Angle differences
refinement.

Figure 7: First images retrieved using the Ransac refine-
ment.

We have computed the mean best rank among relevant im-
ages for a set of ten queries. We also compared the multi-
curves approach to a linear processing of the database for
the k-NN search, in order to see the influence of the ap-
proximate search. The ranks and times are shown in Table
1.

Method mean best rank time
Image matching 27.09 11514s
Linear search 5.45 22967s
Brute vote 14 447s
Ransac 1.09 -
Angle Differences 7.91 -

Table 1: Mean best rank for the first dataset. ’-’ denotes a
time not computed.

As we can see, the time used for the pair-wise compari-
son or for the linear k-NN search are prohibitive. Since
Brute vote uses Multicurves, which is an approximate k-
NN method, we should expect some degradation when com-
pared to Linear search, which uses the costly exact k-NN
search. We note, however, that by using Ransac, the pre-
cision lost is more than compensated. The Ransac refine-
ment has the best results, and is totally satisfactory from
the users point of view.
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Figure 8: Evolution of the number of relevant images
against the number of images retrieved.

We measure the evolution of the number of relevant im-
ages as the percentage of the database retrieved increases
on Fig. 8. The Ransac method outperforms the other in the
beginning of the retrieval, but then stops to retrieve images
(if no coherent affine transform is found, then the image
has a null vote). The Angle Differences and the brute vot-
ing are less efficient, but still manage to retrieve relevant
images within the top 10 images. The pair-wise compari-
son fails to showing relevant images within the top 10.

The precision (ratio between number of relevant images re-
trieved and total images retrieved) is shown on Fig. 9. The
precision within the first five images retrieved (which is the
most relevant metric to the user) is better for the Ransac re-
finement. Past this point, all three k-NN based methods are
almost equivalent. The pair-wise comparison is surpris-
ingly worse than the other methods.

196

       CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5  10  15  20  25

P
re

c
is

io
n

Number of images retrieved

Brute vote
Ransac

Angle Differences
Image matching

Figure 9: Evolution of the precision against the number of
images retrieved.

5.3 Results on dataset 2

An example of results using the brute voting is shown on
fig Fig. 10. As we can see, none of the top images are
relevant. The same occurs with the angle differences re-
finement.

Figure 10: Example of first images retrieved using the k-
NN voting for the second subset.

The RANSAC refinement (Fig. 11) is able to retrieve two
relevant images within the first five images, which means
that irrelevant matches have been well filtered out.

Like we did for the first subset, we compute the mean best
rank shown in table 2. We were not able to compare with
linear k-NN search due to the time taken by this method.

The first observation is that none of the methods is able to
retrieve even one relevant image within the top ten, which
means that the methods are not able to give satisfying re-
sults from the users point of view. Nevertheless, the geo-

Figure 11: Example of first images retrieved using the
Ransac refinement for the second subset.

Method mean best rank
Image matching 80.67
Brute vote 98.80
Ransac 34.40
Angle Differences 59.10

Table 2: Mean best rank for the second dataset.

metric consistency step (either Ransac or the Angle Differ-
ences) provides a nice improvement.
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Figure 12: Evolution of the number of relevant images
against the number of images retrieved.

The evolution of the number of relevant images is shown
on Fig. 12. As we can see, all methods are almost equiv-
alent, with the Ransac strategy being a little better for the
last 20 images of the top 50.

The precision is shown on Fig. 13, and is very low for
all methods. The best result is obtained for the Ransac
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Figure 13: Evolution of the precision against the number
of images retrieved.

strategy, but it is still under 5% most of the retrieval. In
overall, all methods failed at finding the relevant scene in
the database.

6 CONCLUSION

In this paper, we have reviewed the use of keypoints based
voting strategy for image matching in the context of the
iTowns project. We have tested different strategies (pair-
wise comparison, k-NN search with brute voting, angle dif-
ferences refinement, and 2D affine transform estimation)
on two subset of urban scene database.

We have first found that there is no penalty in using an
approximate k-NN search, which is a huge improvement
on the retrieval speed. Even for small datasets like the first
we used, a pair-wise comparison or a linear k-NN search is
not feasible for interactive application.

The second point we have found is that the post-processing
of the voting strategies is essential to the success of the
retrieval. The Ransac refinement is the only one able to
retrieve at least one relevant image within the first five im-
ages, which is the main criterion for a user in this kind of
task. A further improvement could be the estimation of
more complexe transformation that are more robust to per-
spective changes.

However, overall results largely depend on the database
content. In the case of a small database (which can be
obtained through geolocalization) with well taken pictures
like the first we used, the results are good enough to be
used in the intended application.For the second database,
the quality of the results is very low, making them inade-
quate for our applications. This lack of quality might be an
intrinsic characteristic of SIFT when confronted to images
like ours, that contain many problematic features (complex
shadows, trees, branches, etc), which spawn a huge amount
of descriptors with low discriminant power. Those points
increase dramatically the number of false matches, inflat-
ing the rank of of non relevant images (such as on Fig. 14,
which has more matches than the relevant images). As im-
provement, we suggest a filtering of the database in order
to remove points that are not informative.

To conclude, we consider the extension of keypoints based
method from copy detection to the matching of scene in
difficult context as not successful. We think there is more
work to do both on the descriptors and on the matching
process. We intend to share our databases and groundtruth
with the community in order to allow the benchmarking of
those tasks on difficult images.

Figure 14: False matching between two images after geo-
metric consistency check.
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ABSTRACT

We offer in this article, a method for text extraction in images issued from city scenes. This method is used in the
French iTowns project (iTowns ANR project, 2008) to automatically enhance cartographic database by extracting text
from geolocalized pictures of town streets. This task is difficult as 1. text in this environment varies in shape, size,
color, orientation... 2. pictures may be blurred, as they are taken from a moving vehicle, and text may have perspective
deformations, 3. all pictures are taken outside with various objects that can lead to false positives and in unconstrained
conditions (especially light varies from one picture to the other). Then, we can not make the assumption on searched
text. The only supposition is that text is nothandwritten. Our process is based on two main steps: a new segmentation
method based on morphological operator and a classification step based on a combination of multiple SVM classifiers.
The description of our process is given in this article. The efficiency of each step is measured and the global scheme is
illustrated on an example.

1 INTRODUCTION

Automatic text localization in images is a major task in
computer vision. Applications of this task are various (au-
tomatic image indexing, visual impaired people assistance
or optical character reading...). Our work deals with text
localization and extraction from images in an urban en-
vironment and is a part of iTowns project (iTowns ANR
project, 2008). This project has two main goals : 1. al-
lowing a user to navigate freely within the image flow of
a city, 2. Extracting features automatically from this im-
age flow to automatically enhance cartographic databases
and to allow the user to make high level queries on them
(go to a given address, generate relevant hybrid text-image
navigation maps (itinerary), find the location of an orphan
image, select the images that contain an object, etc.). To
achieve this work, geolocalized set of pictures are taken
every meter. All images are processed off line to extract as
many semantic data as possible and cartographic databases
are enhanced with these data. At the same time, each mo-
saic of pictures is assembled into a complete immersive
panorama (Figure 1).
Many studies focus on text detection and localization in
images. However, most of them are specific to a con-
strained context such as automatic localization of postal
addresses on envelopes (Palumbo et al., 1992), license plate
localization (Arth et al., 2007), text extraction in video
sequences (Wolf et al., 2002), automatic forms reading
(Kavallieratou et al., 2001) and more generally ”documents”
(Wahl et al., 1982). In such context, strong hypothesis
may be asserted (blocks of text, alignments, temporal re-
dundancy for video sequences...). In our context (natural
scenes in an urban environment), text comes from vari-
ous sources (road sign, storefront, advertisements...). Its
extraction is difficult: no hypothesis can be made on text
(style, position, orientation, lighting, perspective deforma-
tions...) and the amount of data is huge. Today, we work
on 1 TB for a part of a single district in Paris. Next year,
more districts will be processed (more than 4 TB). Differ-

Figure 2: General principle of our system.

ent approaches already exist for text localization in natu-
ral scenes. States of the art are found in (Mancas-Thillou,
2006, Retornaz and Marcotegui, 2007, Jung et al., 2004,
Jian Liang et al., 2005). Even if preliminary works ex-
ist in natural scene (Retornaz and Marcotegui, 2007, Chen
and Yuille, 2004), no standard solution really emerges and
they do not focus on urban context.
The paper presents our method and is organized as follows:
the text localization process is presented and every step is
detailed followed by the evaluation of main steps. In the
last part, results are presented. Then comes the conclusion.

2 SEGMENTATION BASED STRATEGY

The goal of our system is to localize text. Once the lo-
calization is performed, the text recognition is carried out
by an external O.C.R. (but the system may improve the
quality of the region by correcting perspective deforma-
tions for example). Our system is a region based approach
and starts by isolating letters, then groups them to restore
words and text zones. Region based approach seems to be
more efficient, such approach was ranked first (Retornaz
and Marcotegui, 2007) during ImagEval campaign (Im-
agEval, 2006). Our process is composed of a cascade of
filters (Figure 2). It segments the image. Each region is
analysed to determine whether the region corresponds to
text or not. First stages during selection eliminate a part
of non text regions but try to keep as many text region as
possible (at the price of a lot of false positives). At the
end, detected regions that are close to other text regions are
grouped all together. Isolated text regions are canceled.
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Figure 1: Image from iTowns project.

Figure 3: On the left, functionf anda set of 2 functions
h1 andh2. On the right, functionk computed by toggle
mapping.

3 TEXT SEGMENTATION

Our segmentation step is based on a morphological oper-
ator introduced by Serra (Serra, 1989):Toggle Mapping.
Toggle mapping is a generic operator which maps a func-
tion on a set ofn functions: given a functionf (defined
on Df ) and a set ofn functionsh1, ..., hn, this operator
defines a new functionk by (Fig. 3):

∀x ∈ Df k(x) = hi(x);∀j ∈ {1..n}

|f(x) − hi(x)| ≤ |f(x) − hj(x)|(1)

The result depends on the choice of the set of functionshi.
A classical use of toggle mapping is contrast enhancement:
this is achieved by applying toggle mapping on an initial
function f (an image) and a set of2 functionsh1 andh2

extensive and anti-extensive respectively.
To segment a gray scale imagef by the use of toggle

mapping, we use a set of2 functionsh1 andh2 with h1

the morphological erosion off andh2 the morphological
dilatation off . These two functions are computed by:

∀x ∈ Df h1(x) = min f(y); y ∈ v(x) (2)

∀x ∈ Df h2(x) = max f(y); y ∈ v(x) (3)

with v(x) a small neighborhood (the structuring element)
of pixel x. Then, instead of taking the result of toggle
mappingk (eq. 1), we keep the number of the function on
which we map the pixel. This leads us to define function
s:

∀x ∈ Dfs(x) = i;∀j ∈ {1..2}|f(x)−hi(x)| ≤ |f(x)−hj(x)|
(4)

Functions(x) takes two values and may be seen as a bi-
narization of imagef with a local criterion (Fig. 4 left).
Our function efficiently detects boundaries but may gener-
ate salt and pepper noise in homogeneous regions (Fig. 4
right): even very small local variations generate an edge.
To avoid this, we introduce a minimal contrastcmin and if
|h1(x) − h2(x)| < cmin, we do not analyse the pixelx.

Figure 4: Result of eq. 4 (functions) on an edge and in
homogeneous noisy regions.

Figure 5: From left to right: 1. Original image, 2. Bina-
rization(function s from eq. 4), 3. Homogeneity constraint
(eq. 5), 4. Filling in small homogeneous regions.

Functions is then improved:

s(x) =











0 if |h1(x) − h2(x)| < cmin

1 if |h1(x) − h2(x)| >= cmin

& |h1(x) − f(x)| < p ∗ |h2(x) − f(x)|
2 otherwise

(5)
Then, no boundary will be extracted within homogeneous
areas.s is a segmentation off (notice that now we have 3
possible values instead of 2: a low value, a high value and
a value that represents homogeneous regions).
To use this method efficiently, some parameters must be
set up: the size of the structuring element used to com-
pute a morphological erosion (h1) and a dilation (h2), the
minimal contrastcmin and an additional parameterp. Vari-
ations ofp influence the thickness of detected structures.
Getting three values in output instead of two can be dis-
turbing. Many strategies can be applied to assign a value
to homogeneous regions (to determine whether the region
belongs to low value areas or high value ones): if a region
is completely surrounded by pixels of the same value, the
whole region is assigned to this value. Another strategy
consists in dilating all boundaries onto homogeneous re-
gions. In our case, this is not a real issue: as characters
are narrow, it is not common to have homogeneous regions
inside characters and if it occurs, such regions are small.
Then, our strategy consists in studying boundaries of small
homogeneous regions in order to fill a possible hole in
characters. Bigger homogeneous regions are mostly left
unchanged, only a small dilation of these boundaries is per-
formed.
Illustration of the segmentation process is given in Fig-
ure 5. In the rest of the paper, this method is called Toggle
Mapping Morphological Segmentation (TMMS).
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4 FILTERING

Oncethe image is segmented, the system must be able to
select which regions contain text (letters) and which do
not. A part of these regions is obviously non text (too
big/too small regions, too large...). The aim of this step is
to dismiss most of these obviously non text regions with-
out loosing any good character. A small collection of fast
filter (criteria opening) eliminate some regions with sim-
ple geometric criteria (based on area, width and height).
These simple filters help saving time because they rapidly
eliminate many regions, simplifying the rest of the process
(which is a bit slower).

5 PATTERN CLASSIFICATION

Some segmented regions are dismissed by previous filters
but a lot of false positives remain. To go further, we use
classifiers with suitable descriptors.
Due to the variability of analysed regions, descriptors must
(at least) be invariant to rotation and scale. The size and the
variability of examples in training database ensure to be in-
variant to perspective deformations. We have tested a lot of
different shape descriptors (such as Hu moments, Fourier
moments...). Among them, we have selected two families
of moments : Fourier moments and the pseudo zernike mo-
ments. We select them empirically as during our test, they
get a better discrimination ratio than others. We choose
also to work with a third family of descriptors: polar repre-
sentation is known to be efficient (Szumilas, 2008) but the
way this representation is used does not match our need.
Then we define our own polar descriptors: the analysed re-
gion is expressed into polar coordinate space centered into
the gravity center (Figure 6). The feature is then mapped
into a normalized rectangle (the representation is then in-
variant in scale factor). To be rotation invariant, many peo-
ple use this representation by computing a horizontal his-
togram within this rectangle but this leads to a loss of too
much information. Another way to be rotation invariant
if the representation used is not rotation invariant is to re-
define the distance computed between samples (Szumilas,
2008). But this leads to a higher complexity. To be rota-
tion invariant, we simply take the spectrum magnitude of
Fourier transform of each line in the normalized rectan-
gle. These results carry much more information than sim-
ple histograms, and are easier than changing the distance
used.

Once we choose the descriptors, we train a svm classi-
fier (Cortes and Vapnik, 1995) for each family of descrip-
tors. To give a final decision, all outputs of svm classifier
are processed by a third svm classifier (Figure 7). We tried
to add more classifiers in the first step of the configuration
(with other kinds of descriptors) but this makes the overall
accuracy systematically decreasing.

6 GROUPING

We are able to analyse main regions in the image and ex-
tract characters. Once these characters are selected, they

Figure 6: The region is expressed in a polar coordinate
spaceand to have a rotation invariant descriptor we take
the spectrum of Fourier transform of every line.

Figure 7: Our classifier is composed of 3 svm classifiers
thatuse common family of descriptors and a svm that take
the final decision.

are grouped all together with neighbour to recover text re-
gions. The conditions to link two characters to each other
are the one given in (Retornaz and Marcotegui, 2007). They
are based on the distance between the two regions rela-
tively to their height. This steps will soon be improved
to handle text in every direction as this approach is re-
stricted to nearly horizontal text. During this process, iso-
lated text regions (single character of couple of letters)
are dismissed. This aggregation is mandatory to generate
words and sentences to integrate as an input in an O.C.R.
but it also suppresses a lot of false positive detections.

7 LETTER DETECTION EXPERIMENTS

In this section, we evaluate segmentation and classification
steps.

Segmentation The segmentation evaluation is always dif-
ficult as it is, for a part, subjective. Most of time, it is
impossible to have a ground truth to be used with a repre-
sentative measure. To evaluate segmentation as objectively
as possible for our application, we have constituted a test
image database by randomly taking a subset of the image
database provided by I.G.N. (Institut Géographique Na-
tional, n.d.) to the project (iTowns ANR project, 2008). We
segment all images from this database and we count prop-
erly segmented characters. We define as clearly as possi-
ble whatproperly segmented means: the character must be
readable, it must not be split or linked with other features
around it. The thickness may vary a little provided that its
shape remains correct. We compare the result with 3 other
segmentation methods:

• Niblack binarization criterion (Niblack, 1986) which

201

    In: Stilla U, Rottensteiner F, Paparoditis N (Eds) CMRT09. IAPRS, Vol. XXXVIII, Part 3/W4  ---  Paris, France, 3-4 September, 2009 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



evaluates a thresholdT (x) for a given pixelx, accord-
ing to its neighborhood by:

T (x) = m(x) + ks(x) (6)

with m and s the mean and the standard deviation
computed on the neighborhood andk ∈ R a parame-
ter.

• Sauvola binarization criterion (Sauvola et al., 1997)
which evaluates a thresholdT (x) by:

T (x) = m(x)

(

1 + k

(

s(x)

R
− 1

))

(7)

with R the dynamic of standard deviations(x).

• the segmentation exposed by Retornaz (Retornaz and
Marcotegui, 2007) based on theultimate opening. This
operator, introduced by Beucher (Beucher, 2007), is
a non-parametric morphological operator that high-
lights the most contrasted areas in an image.

The evaluation image database contains501 characters. The
results of each method are given in the following table:

% of properly segmented characters

Niblack 73,85
Sauvola 71,26
TMMS 74,85
Ultimate Opening 48,10

Our method gives the best results. Thresholding with Sauvola
criterion is far less efficient on average. It fails frequently
on text correctly handled with Nilback criterion or our method
but, in some situations, it gives the best quality segmenta-
tion. The overall poor result is explained by the high diffi-
culty level of the environment. The ultimate opening sur-
prisingly gives bad results. This may come from the fact
that images are taken by sensors mounted on a moving car:
images may have a motion blur, which makes the ultimate
opening fail. We then cancel it from the comparison.
The other aspect of our comparison is speed. We evaluate
all methods on the set of images and compute mean times.
Times are given in seconds for1920x1080 image size and
according to the size of the mask of every method:

Mask size 3x3 5x5 7x7 9x9 11x11

Niblack 0,16 0,22 0,33 0,47 0,64
Sauvola 0,16 0,23 0,33 0,47 0,64
TMMS 0,11 0,18 0,27 0,44 0,55

All implementations are performed according to the defi-
nition without any optimization. Our method always gets
the best execution times (Notice that Shafait et al. (Shafait
et al., 2008) have recently offered a faster way to compute
Sauvola criterion).

The speed of the algorithm is important but the output is
also a major aspect as execution time of a complete scheme
usually depends on the number of regions provided by seg-
mentation steps. On our database, on average, binarization

Figure 8: Examples of text and non text samples in learn-
ing database.

with Niblack criterion generates65177 regions, binariza-
tion with Sauvola criterion generates43075 regions, our
method generates28992 regions. Reducing the number
of regions in the output may save time when we process
these regions. The possibility, in our method, to set up
the lowest allowed contrast prevents from having over seg-
mented regions. Moreover, many of these regions, noticed
as homogeneous, can be associated with other neighbour
regions (end of section 3). This simple process may lead
to a decrease in the number of regions. This low number
of regions may increase the localisation precision as it can
decrease false positives. It is another proof that the seg-
mentation provided by our method is more relevant.

Letter Classification To perform training and testing we
have constituted (Fig. 8):

• a training data base composed of32400 examples with
16200 characters from various sources (letters at dif-
ferent scales/points of view...) and16200 other re-
gions extracted from various urban images and,

• a testing base with3600 examples.

Notice that all training are performed by tools provided
by (Joachims, n.d.).
Different configurations of classifiers have been tested to
get the highest classification accuracy. With the configura-
tion we have chosen (Figure 7), the svm classifier trained
with pseudo Zernike moments gives75.89% of accuracy,
the svm classifier trained with our polar descriptors gives
81, 50% of accuracy and last svm classifier trained with
Fourier descriptors gives83, 14% of accuracy. This proves
that our descriptor is well defined as its accuracy is at the
same level of accuracy as Fourier descriptors and pseudo
Zernike moments.
To make the final decision we choose alate fusion archi-
tecture. Different tests are performed: from a simple vote
of the three previous classifiers to the use of another classi-
fier. The best result has been reached by the use of a SVM
classifier which gets,87, 83% of accuracy with the confu-
sion matrix :

% Letter Background
Letter 91,56 8,44
Background 15,89 84,11

The unbalanced result is interesting for us, as the most im-
portantfor us is not to lose a character.
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Figure 9: The system localizes correctly text in the image
(even with rotated text) but it detects aligned windows as
text.

Figure 10: Text is correctly localized, but the classification
stepfails on the end of the wordcourant in red and zebra
crossing sign is seen as text.

We also test different combinations of classifiers and de-
scriptors. When we try early fusion architecture, we give
all descriptors to a unique svm classifier ; the result does
not even reach74% of accuracy. On the contrary, if we
add a collection of simple geometric descriptors (compac-
ity, surface, concavity...) to the svm classifier that must
take the final decision in our architecture, the overall ac-
curacy reaches88, 83%. These measures seem to help the
classifier to select which classifiers are the most reliable
depending on the situation.
The overall accuracy seems to be a bit low but the vari-
ability of text in our context is so huge that the real perfor-
mance of the system is not so bad.

8 TEXT LOCALIZATION IN CITY SCENES

Let us see the application of the complete scheme. We took
an initial image (Figure 12). The application of our algo-
rithm of segmentation gives the result in figure 13. All re-
gions with a reasonable size are kept, others are dismissed
(Figure 14). The classifier selects text regions among re-
maining regions (Figure 15). Text regions are grouped to
create words and sentences (Figure 16).
The system is efficient: instead of a variation of orienta-
tion, police and lighting condition, the system handles ma-
jority of text (Figure 9, 10 et 11). But it also generates
many false positives: especially aligned windows (Figure 9
top right and Figure 11). Other results can be seen in fig-
ures 9 and 10. The system must then be improved to reduce
false positives.

Figure 11: Various texts are correctly handled but periodi-
cal features are also interpreted as text.

9 CONCLUSION

We have presented a text localization process defined to
be efficient in the difficult context of the urban environ-
ment. We use a combination of an efficient segmentation
process based on morphological operator and a configu-
ration of svm classifiers with various descriptors to deter-
mine regions that are text or not. The system is competi-
tive but generates many false positives. We are currently
working to enhance this system (and reducing false posi-
tives) by improving the last two steps: we keep on testing
various configurations of classifiers (and selecting kernels
of svm classifiers) to increase the accuracy of the classi-
fier and we are especially working on a variable selection
algorithm. We are also working on the grouping step of
neighbour text regions and its correction to send properly
extracted text to O.C.R.
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Figure 12: The initial image used for the test. This im-
ageis provided by the french ign (Institut Ǵeographique
National, n.d.).

Figure 13: The image segmented by our algorithm TMMS.

Figure 14: All big regions are removed. Only the regions
of reasonable size are kept.

Figure 15: Remaining regions are classified by our system.
Text region (in green) are kept, non text region (in red) are
removed.

Figure 16: Isolated text regions are removed and remaining
regions are grouped.
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ABSTRACT

Detection and recognition of road signs can constitute useful tools in driving assistance and autonomous navigation
systems. We aim at generating a road sign database that can be used for both georeferencing in autonomous vehicle
navigation systems and also in high scale 3D city modelling. This paper proposes a robust algorithm that can detect road
signs shape and recognizes their types.

1 INTRODUCTION

Road signs are very important features for providing rules
of navigation. Indeed, they are key landmarks when navi-
gating on the roads. Their visual properties are very strong
because they have been designed to be remarkable and un-
missible objects. Road signs are thus key objects to en-
rich road model databases to generate roadbooks, short-
est paths, etc. The automatic detection and recognition of
road signs from images (together with objects such as road
marks) is thus a key topic and issue for road model updat-
ing but also for tomorrow’s applications of these databases,
i.e. driving assistance, and accurate localisation functions
for autonomous navigation. Most of the previous work in
image based road sign extraction deal with three following
issues:

• Color detection : road signs are often red or blue
with some black and white. Many authors used this
property to detect them. Often, color base rules are
defined in a color space and used for segmentation.
(de la Escalera, 1997) use RGB color space and work
with relations between the red , green and blue. Other
authors works with color spaces that are less sensitive
to lighting changes. Although the HSI (Hue, Satu-
ration, Intensity) space is the most common (Piccioli
et al., 1996). More complicated color space such as
LCH (Lightness, Chroma, Hue) (Shaposhnikov et al.,
2002) and CIELAB (Reina et al., 2006) are also used.

• Shape detection: road signs forms are often rect-
angular, triangular or circular. In order to strengthen
the detection, some authors propose to detect these
geometric forms within ROIs1 provided by color de-
tection. (Ishizuka and Hirai, 2004) present an algo-
rithm for circular road sign detection. (Habib and Jha,
2007) propose an algorithm for road sign forms de-
tection by line fitting. An interesting measure of el-
lipticity, rectangularity, and triangularity is proposed
by (Rosin, 2003).

• Type recognition: It consists in recognising road
sign type using its pictorial information. It is often

∗A. Arlicot is currently at Polytech’Nantes, IRCCyN lab France.
1Region of Interest

performed by comparing the inside texture of a de-
tected road sign with the textures in a database. For
this purpose different kind of algorithms are used in
the state of the art. (Priese et al., 1995) propose an
algorithm that is based on neural networks. SIFT de-
scriptors are used by (Aly and Alaa, 2004). (de la Es-
calera et al., 2004) used intensity correlation score as
a measure of similarity to compare the detected road
sign with a set of standard signs.

2 OUR STRATEGY

We propose an algorithm consisting in three main steps.
Diagram of Figure 1 shows the pipeline of our algorithm.
First step uses color properties of signs and perform a pre-
detection (Section 3). It provides a set of ROIs in image
space. Then, an ellipse detection algorithm is applied to
detect circular shape signs within the ROIs (Section 4).
The detected shapes are considered as road sign hypothe-
ses. Final step consists in validation or rejection of hy-
potheses. This is performed by matching detected hypothe-
ses with a set of standard circular signs of the same color
(Section 5). Results and evaluations are presented in Sec-
tion 6.

3 COLOR DETECTION

A large number of road signs are blue or red. It can sim-
plify their detection by looking for red and blue pixels.
However their RGB values depend on illumination condi-
tions. We use HSV (Hue, Saturation, Value, see Equation
1) color space because it is robust against variable condi-
tions of luminosity. In order to choose the adapted thresh-
old of saturation and hue, we learn these parameters from
a set of road sign sample in different illumination condi-
tions. Figure 2(a) shows our running example image and
result of blue color detection is shown in Figure 2(b). In
order to provide ROIs, connected pixels are labeled (see
Figure 2(c)). Each label defines a window in image space.
The following form detection and validation steps are per-
formed within these windows.
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COLOR PREDETECTION

SHAPE DETECTION

HYPOTHESIS VERIFICATION AND 
CLASSIFICATION

Ellipse detection

Ellipse rectification

Matching with texture data base

Figure 1: Our 3 steps strategy.

H =


(0 + G−B

MAX−MIN )× 60 if R = MAX,

(2 + B−R
MAX−MIN )× 60 if G = MAX,

(4 + R−G
MAX−MIN )× 60 if B = MAX,

S =
MAX −MIN

MAX
,

V = MAX,

where:
MAX = max(R,G, B)
MIN = min(R,G, B) (1)

4 CIRCULAR SIGN DETECTION

The shape detection have to detect all the types of road
signs (the rectangular, triangular and circular road signs).
In this first version of work we choose to focus on the cir-
cular road signs because they are the most common. The-
orically, a circle appears as an ellipse in perspective im-
ages. The quantity of perspective deformation depends on
the angle between image and the circle plane. Often, road
signs belong to a traffic lane and supposed to provide infor-
mation to drivers in the same lane. In this case perspective
deformation is negligible. This is the reason why most of
the Driver Assistance Systems (ADAS) ignore perspective
deformation.

We aim at extracting all visible road signs within an im-
age what ever their orientation is. This is interesting in
both database generation and the use of road signs as vi-
sual landmarks for positioning purposes. Thus, an ellipse
detection algorithm is investigated (Section 4.1).

(a)

(b)

(c)

Figure 2: Color detection results. a) our running example
RGB image, b) blue color mask, c) labeling independent
connected pixels.

4.1 Ellipse Detection

Input of this step is a set of image windows provided by
the color detection step. We use edge points for ellipse de-
tection. In each image window, edges are extracted using
Canny-Deriche edge detector (Deriche, 1987).

An ellipse is defined with five parameters (2 for the center,
2 for the axes length and one for orientation). Equation 2
express equation of ellipse. In this Equation p and q stand
for ellipse center. Orientation and axes length depend on
a, b and c.

a(x− p)2 + 2b(x− p)(y − q) + c(y − q)2 = 1 (2)

This equation is not linear. We make use the Pascal’s the-



orem to find the center (p, q) of the ellipse using only 3
points by estimation of tangents at each point. It allows a
linear estimation of ellipse using only 3 points.

4.1.1 Ellipse from three points Given 3 points P1, P2,
P3 on an ellipse (see Figure 3) the center is computed as
follows:

• Tangents at these 3 points (t1, t2, t3) are found.

• Intersections of t1 with t2 (I1) and t2 with t3 (I2) are
computed.

• Midpoints of the segments [P1P2] and [P2P3] (M1

and M2) are found.

• The intersection of the segments [I1M1] and [I2M2]
gives the ellipse center (C).

P1

P2

P3

t3

t1

t2

C

M2

M1

I1

I2

Figure 3: Use of Pascal’s theorem for estimating ellipse
center with 3 points.

When the center coordinates (p, q) are obtained the coordi-
nate system is shifted such as (p, q) become origin. Then,
the Equation 3 can be applied to estimate the ellipse equa-
tion using 3 points.

ax2 + 2bxy + cy2 = 1 (3)

4.1.2 Ellipse estimation with RANSAC In the previ-
ous section the ellipse estimation method was explained
when we have three points on the ellipse. The problem is
to obtain three points belonging to the ellipse within the
noise (see Figure 4(a)). We used a RANSAC algorithm
(Fischler and Bolles, 1981). It is composed of six steps:

1. Pick randomly three points within the edges points.

2. Estimate the ellipse parameters (see Section 4.1.1).

3. Search how many edge points fit on the ellipse model
(number of support points).

4. If the number of support point is sufficiently great, we
accept the model and exit the loop with success. We
assume that the number of support point is sufficient
when it is higher than a percentage of the estimated
theoretical ellipse circumference.

5. Repeat the steps 1 to 4, n times.

6. If we arrive to this step, we declare a failure and there
is no ellipse found.

Suppose that the density ratio of inlier is 50% and the prob-
ability that the algorithm exit without finding a good fit is
chosen 5%, then, the number of needed iterations (n) is 25.

In ellipse estimation, in order to compute the needed tan-
gent on each edge point, a line is fitted to its neighbours
on the linked edges. A neighborhood of 2 pixels is cho-
sen. Due to discretisation, it does not provide a good tan-
gent estimation when using pixel accuracy. This problem
is shown in Figures 4(b) and 4(c). It causes more frequent
failure and less accurate result. In order to cope with this
problem, the edge points are delocalised to provide a sub-
pixel accuracy using the method developed in (Devernay,
1995).

Figure 5 shows an example of result obtained by this algo-
rithm.

5 HYPOTHESIS VERIFICATION AND TEXTURE
PATTERN RECOGNITION

5.1 Ellipse Rectification

Validation and recognition of road sign is performed by
comparing the detected circular road sign with a set of ref-
erence ones (See Figure 7) . The inside texture of sign is
used to measure the its similarity with all reference signs.
Correlation coefficient seems to be particularly interesting
for this purpose. However the detected signs are deformed
to ellipse while the reference ones are circular. It make the
correlation process difficult. In order to resolve the prob-
lem, we propose to rectify the texture of the detected sign
to match the geometry of reference ones. The needed trans-
formation must transform an ellipse to a circle of a given
radius. This is performed using an 8 parameters projec-
tive transformation. We suppose that the images are ap-
proximately horizontal or the orientation of the images are
known so the transformation is unique. Figure 6 shows
some examples of resampled road signs.

5.2 Matching with texture DB

After rectification, in order to match only the pixel inside
the road sign, we generate a circular mask and we apply
the ZMNCC (Zero Mean Normalized Cross Correlation)
function to compute the similarity of detected and refer-
ence object (See Equation 4).
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Figure 4: Edge extraction: red crosses represent subpixel
accuracy edge position. : a) extracted edges, b) a zoom on
edges of (a), 5 points are chosen for tangent estimation, c)
Difference between pixel accuracy tangent and sub pixel
one.

(a) (b)

Figure 5: (a) Example of all the centers and axes explored
by RANSAC algorithm (b) the estimated solution.

Figure 8 shows some result of correlation. We match de-
tected red signs only with the red reference signs and blue
ones with blue references. However in Figure 8, corre-
lation coefficient with all signs are shown to demonstrate
the discrimination power of correlation function. In most
of the cases, the maximum of correlation coefficient corre-
sponds to the good sign. We accept the maximum of corre-
lation if it is higher than 60%. Hypotheses with lower cor-
relation coefficients are rejected. This threshold is chosen
relatively low. The reason is that the texture of signs in im-
ages suffer from both radiometric calibration problem and
illumination changes within one sign. Better radiometric
calibration can partially reduce this effect. So higher cor-

(a) (b)

(c) (d)

(e) (f)

Figure 6: (a), (c) and (e) are the original image windows
and (b), (d) and (f) are respectively their resampled images.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7: Circular road signs reference database.

relation coefficient thresholds can be set in the algorithm
and improve the reliability of recognition.

Scorecorr(A, B) =
nP

x=1

mP
y=1

[A(x,y)−A][B(x,y)−B]s
nP

x=1

mP
y=1

[A(x,y)−A]2
nP

x=1

mP
y=1

[B(x,y)−B]2

(4)



6 RESULTS AND PERFORMANCE EVALUATION

The proposed algorithm is evaluated on a set of 1370 im-
ages acquired in dense urban area with real traffic condi-
tions. Figures 9-13 show some obtained results. In each
image the number of correct detection, false detection, and
true road signs are counted manually. We assume that if a
road sign is smaller than 10 pixels, we can not detect it.

We observed that there is 67% of good detection and 33%
of road signs are not detected. This is due to our camera
radiometric calibration problems that causes color detec-
tion failure. As color detection is at the beginning of our
pipeline the shape detection and recognition processes are
not performed on the lost road signs.

The shape detection and recognition steps works well. We
mean that, in most of the cases they reject correctly the
false hypotheses and in the case of validation the type of
road signs are correctly distinguished. However, there is
5% of false detection. They are in most of the cases due
to the red lights behind the cars or the tricolor lights that
are very similar to wrong-way (see Figure 7(b)) traffic sign
(see Figure 9) .

7 CONCLUSION AND TRENDS

In this paper we proposed a pipeline for road sign detection
in RGB image. Thanks to ellipse detection and rectifica-
tion processes, the algorithm is not sensitive to road sign
orientation. The matching step provides a reliable recogni-
tion of road sign type.
Evaluations revealed that, the detection rate is about 70%.
This is always due to failure in color detection step. Better
radiometric calibration of the camera and test of other color
spaces are the work in progress for improving color detec-
tion. In contrast to color detection step our shape detection
and recognitions steps provide satisfactory and reliable re-
sults.
The proposed algorithm can be easily extended to handle
the rectangular and triangular road signs. For this purpose,
it is enough to adapt the shape detection step and both other
steps remain unchanged.
In Figure 13 we can see a particular case which represent
two small road signs on a bigger road sign. These cases
can be handled using a stereo system allowing 3D position
and size estimation.
In real time applications such as driver assistance systems,
it is often interesting to track objects in video sequences.
Actually, our algorithm does not work in real time and can
not be applied on video sequences. The edge detection
is the most time consuming step. In order to reduce the
processing time, other edge detectors such as Sobel or Pre-
witt filters can be applied and evaluated. The search area
can also be limited to remove the sky and so speed up the
global processing time.
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Figure 8: Correlation score of the hypotheses with road
sign DB.

Figure 9: A false detection example. Red light of tri color
light is detected as wrong way traffic sign.

Figure 10: Detection of road signs.

Figure 11: Detection of red road signs.

Figure 12: Detection of blue road signs.

Figure 13: Detection of particulars road signs.
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ABSTRACT

In our contribution, we improve image segmentation by integrating depth information from multi-view analysis. We
assume the object surface in each region can be represented by a low order polynomial, and estimate the best fitting pa-
rameters of a plane using those points of the point cloud, which are mapped to the specific region. We can merge adjacent
image regions, which cannot be distinguished geometrically. We demonstrate the approach for finding spatially planar
regions on aerial images. Furthermore, we discuss the possibilities of extending of our approach towards segmenting
terrestrial facade images.

1 INTRODUCTION

The interpretation of images showing building scenes is a
challenging task, due to the complexity of the scenes and
the great variety of building structures. As far as human
perception is understood today, humans can easily group
visible patterns and use their shape to recognize objects,
cf. (Hoffman and Richards, 1984) and (Treisman, 1986).
Segmentation, understood as image partitioning often is
the first step towards finding basic image patterns. Early
image segmentation techniques are discussed in (Pal and
Pal, 1993). Since then, many other algorithms have been
proposed within the image analysis community: The data-
driven approaches often define grouping criteria based on
the color contrast between the regions or on textural infor-
mation. Model-driven approaches often work well only on
simple scenes e. g. simple building structures with a flat
or gabled roof. However, they are limited when analyzing
more complex scenes.

Since we are interested in identifying entities of more than
two classes as e.g. buildings, roads and vegetation objects,
we cannot perform a image division into fore- and back-
ground as summarized in (Sahoo et al., 1988). Our seg-
mentation scheme partitions the image into several regions.

It is very difficult to divide an image into regions if some
regions are recognizable by a homogenous color, others
have a significant texture, and others are separable based
on the saturation or the intensity, e. g. (Fischer and Buh-
mann, 2003) and (Martin et al., 2004). However, often
such boundaries are not consistent with geometric bound-
aries. According to (Binford, 1981), there are seven classes
of boundaries depending on illumination, geometry and re-
flectivity. Therefore, geometric information should be in-
tegrated into the segmentation procedure.

Our approach is motivated by the interpretation of building
images, aerial and terrestrial, where many surface patches
can be represented by low order polynomials. We assume a
multi-view setup with one reference image and its intensity
based segmentation, which is then improved by exploiting
the 3D-information from the depth image derived from all
images. Using the determined orientation data, we are able
to map each 3D point to an unique region. Assuming, ob-
ject surfaces are planar in each region, we can estimate a

plane through the selected points. The adjacent regions are
merged together if they have similar planes. Finally, we
obtain an image partition with regions representing dom-
inant object surfaces as building parts or ground. We are
convinced that the derived regions are much better for an
object-based classification than the regions of the initial
segmentation, because many regions have simple, charac-
teristic shapes.

The paper is structured as followed. In sec. 2 we discuss
recent approaches of combining images and point cloud
information, mostly with the focus on building reconstruc-
tion. Then in sec. 3 we briefly sketch our approach for
deriving a dense point cloud from three images. So far, our
approach is semi-automatic due to the setting of the point
cloud’s scale, but we discuss the possibility of automatiza-
tion for all its steps. In sec. 4 we present how we estimate
the most dominant plane in the dense point cloud restricted
on those points, which are mapped to pixels of the same re-
gion. The merging strategy is presented in sec. 5. Here we
only study the segmentation of aerial imagery and present
our results in sec. 6. Adaptations for segmenting facade
images are discussed in each step separately. We summa-
rize our contribution in the final section.

2 COMBINING POINT CLOUDS AND IMAGES

The fusion of imagery with LIDAR data has successfully
be done in the field of building reconstruction. In (Rotten-
steiner and Jansa, 2002) regions of interests for building
extraction are detected in the set of laser points, and pla-
nar surfaces are estimated in each region. Then the color
information of the aerial image is used to merge adjacent
coplanar point cloud parts. Contrarily, in (Khoshelham,
2005) regions are extracted from image data, and the spa-
tial arrangement of corresponding points of a LIDAR point
cloud is used as a property for merging adjacent regions.
In (Sohn, 2004) multispectral imagery is used to classify
vegetation in the LIDAR point cloud using a vegetation in-
dex. The advantage of using LIDAR data is to work with
high-precision positioned points and a very limited portion
of outliers. The disadvantage is its expensive acquisition,
especially for aerial scenes. Hence, we prefer to derive a
point cloud from multiple image views of an object.
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Within the last years, the matching of multiple views of
an object enabled the reconstruction of 3D object points
with high accuracy and high density. Previous approaches
as (Kanade and Okutomi, 1994) are based on a low-level
preprocessing of the image to extract points of interest.
Then, the correspondences of such points are used to es-
timate the 3D position of the object points. In many ap-
plications, Förstner-features (Förstner and Gülch, 1987)
or SIFT-features (Lowe, 2004) are used, but the derived
point clouds are either sparse or have been extracted from
many images or video, e. g. (Mayer and Reznik, 2005) and
(Gallup et al., 2007). In (Tuytelaars and Van Gool, 2000),
the correspondences are determined over local affinely in-
variant regions, which were extracted from local extrema
in intensity images. This procedure is liable to make match-
ing mistakes if the image noise is relatively high.

Dense point clouds from only a few images are obtained
by adjusting the correspondence between pixels by correla-
tion based on (semi-) global methods, e. g. (Hirschmüller,
2005). Assuming the observed objects have a smooth sur-
face, the accuracy of the obtained point clouds gets in-
creased by including information on the relations between
the pixels by a Markov random field, e. g. (Yang et al.,
2009), or from image segmentation, e. g. (Tao and Sawh-
ney, 2000).

In our approach, we take up the idea of (Khoshelham, 2005)
to improve an initial image segmentation using additional
3D information. From multi-view analysis, we derive a
point cloud, which is used for deriving additional features
for the segmented image regions. We focus on building
scenes, whose objects mostly consist of planar surfaces.
So, it is reasonable to look for dominant planes in the point
cloud, where the search is guided by the image segmenta-
tion.

For us, it is important to realize an approach, which has
the potential to get automatized since there are many ap-
plications with thousands of images. There is a need for a
completely automatic procedure if additional features are
derived from a reconstructed point cloud to improve the
segmentation or interpretation of the images. Our input are
only two or more images from the object, which were taken
by a calibrated camera. An example is shown in fig. 1.

3 RECONSTRUCTION OF THE 3D SCENE

In this section, we describe the generation of the point
cloud C from the given images. For this generation, there
are two conditions, which should be fulfilled: (a) the ob-
served objects should be textured sufficiently and (b) the
views must overlap, otherwise we have problems to deter-
mine the relative orientation between the images. So far,
the implemented algorithms need some human interaction
for setting the point cloud scale and the disparity range pa-
rameters, but under certain conditions, the whole approach
could get designed to perform completely automatically.

We describe the procedure with two or three given images
I1, I2 and I3. Two views are necessary to reconstruct the

Figure 1: Three aerial views of a building scene consisting
of a flat roofed part and a gable roofed part. The initial
segmentation of the upper view is shown on its right side.
The ground consists of several weirdly shaped regions, and
the flat roof is also not well segmented.

Figure 2: Reconstructed 3D-points are projected back into
2D-image (white). Left: all pairs of matches are shown.
The point cloud is very dense with approximately 75% of
pixels having a 3D point, but these points are very impre-
cise. Right: only matches in all three images are shown.
The point cloud is still dense with approximately 30% of
pixels having a 3D point with higher precision.

observed 3D data, but if the matching is performed over
three images, the point cloud is still dense, see fig. 2, and it
contains more reliable points, thus less outliers. The recon-
struction process can get improved if even more images are
considered. If all used images were taken by a calibrated
camera, we are able to reconstruct the 3D scene by per-
forming the following steps.

In the first step we determine the relative orientations be-
tween the given images. Of course, it can be skipped if the
projection matrices have been estimated during image ac-
quisition. Otherwise, due to the calibration of the camera
we eliminate automatically the non-linear distortions using
the approach of (Abraham and Hau, 1997). The matching
of extracted key-points using the approach of (Lowe, 2004)
leads to the determination of the relative orientations of all
images, i. e. their projection matrices P n, cf. (Läbe and
Förstner, 2006). The success of the relative orientation can
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be evaluated according to the statistics of the performed
bundle adjustment. This step is usually robust enough for
typical building scenes, because the facades are often suf-
ficiently textured, and we do not have to deal with total oc-
clusions. Otherwise, problems may occur due to too large
mirroring facade parts.

The images are oriented relatively, not absolutely, i. e. the
position of the projection centers are not correctly scaled
yet. Since we cannot invert a transformation from 3D to
2D, a reasonable assumption about the scale always has to
be inserted additionally. The easiest way to set the scale
parameter is to measure GPS positions during the image
acquisitions. Another strategy would be to measure one or
more distances on the object and to identify corresponding
points in the images or in the extracted point cloud later.
While the first way can easily get automatized, the second
one has to be done by human interaction.

From the second step on, we only use three images for a
dense trinocular matching and only accept those 3D points,
which were matched in all three images. Thus, we re-
duce many matching errors close to the image borders and
avoid points corresponding to occluded surfaces. We use
the semi-global matching by (Hirschmüller, 2005) in a re-
alization by (Heinrichs et al., 2007). It is efficient, does
not produce too many outliers, and returns a dense point
cloud with sufficiently precise points. This approach de-
mands that the images are arranged in a L-shaped config-
uration with a base image, a further one shifted approxi-
mately only horizontally and a third shifted approximately
only vertically. Due to the special relation between the
three given images, the search space of the matching and
3D estimation of a point is reduced to a horizontal or ver-
tical line, respectively. So far, the two parameters of the
one-dimensional search space for the depth have to be set
manually before the program is started. Usually, this range
lies in a small bound assuming that the flying height or the
distance of a facade to the camera are restricted and do not
vary much.

The semi-global matching returns a disparity map, which
is used to estimate the 3D point cloud by forward intersec-
tion. There are a couple of hundred or a thousand gross er-
rors in the determined point cloud, which can be removed
under the assumption that all points lie in a certain bound-
ing box. Besides of the remaining outliers the most ex-
tracted 3D points form spatial clusters with clearly visible
ground and roof planes, cf. fig. 3. Compared with other de-
rived point clouds from stereo aerial imagery, e. g. Match-
T1, the precision of our reconstructed points is significantly
lower, but we compensate it by the higher denseness.

4 REGION-WISE PLANE ESTIMATION

In this section, we describe the estimation of the most dom-
inant plane for each detected image region of minimum
size. Thereby, any arbitrary image partitioning algorithm

1Automated DTM Generation Environment by inpho, cf.
www.inpho.de

Figure 3: Side- and frontview on a point cloud, derived
from scene extracts of the three aerial images from fig. 1.
Besides the widely spread points on vegetation objects and
some outliers, one can clearly recognize up to four major
clusters showing the ground, a flat roof and a gabled roof.

can be chosen. In an earlier experiment, we made good ex-
periences with segmenting aerial images using the water-
shed algorithm based on the color gradient, cf. (Drauschke
et al., 2006). This segmentation approach is also applica-
ble to facade images, cf. (Drauschke, 2009). To overcome
oversegmentation at nearly all image parts, we smooth the
image with a Gaussian filter with σ = 2 before determin-
ing the watershed regions. Then, oversegmented image
parts are highly correlated with vegetation objects, which
are not in our focus yet. Such an initial segmentation is
shown in fig. 1. For further calculations, we only consider
those regions Rk, which have a minimum size of 250 pix-
els. This parameter should depend on the image size. We
have chosen a relatively high value for efficiency reasons.

In the further process, we want to estimate low order poly-
nomial through the 3D points of each region, i. e. its most
dominant plane. Therefore, we determine for each region
the set of points {Xj} from the point cloud, which are
projected into the region:

Xj 7→ Rk ⇔ xj = P nXj and xj ∈ Rk. (1)

We assume that most dominant building surfaces and the
ground are planar. Hence, we estimate the best fitting plane
through the 3D points of a region. A similar procedure can
be found in (Tao and Sawhney, 2000). For efficiency rea-
son, we choose a RANSAC-based approach for our plane
search, cf. (Fischler and Bolles, 1981). Therefore, we de-
termine the parameters of the plane’s normal form from
three randomly chosen points Xj1 , Xj2 and Xj3 :

n = (Xj2 −Xj1)× (Xj3 −Xj1) (2)

d =
〈

n

||n||
,Xj1

〉
(3)
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and check, how many object points support the determined
plane i. e. how many points are near the plane. This de-
pends on the choice of a threshold. Considering aerial
images we allowed a maximal distance of 20 cm to the
plane. If we want to guarantee with a minimum proba-
bility pmin = 0.999 finding a plane, which is constructed
by 3 points and supported by at least half of the points
(ε = 0.5), we have to perform m = 52 trials, because

m =
log (1− pmin)

log (1− (1− ε)3)
=

log 0.001
log 0.875

≈ 51.7. (4)

If no sufficiently high number of supporting points can be
found within m trials, the region will no longer be ana-
lyzed. In our empirical investigation, segmented regions
representing roof parts have always a most dominant plane.
Such plane could not get found if e. g. the ground is not
planar but forms a small hill or valley, e. g. at and around
trees and shrubs. Furthermore, we accepted only those 3D
points, which are visible in all three images. Therefore,
occluded building parts are also not in further process.

We estimate the best fitting plane using a least-squares ad-
justment on those points, which support the best proposed
plane during the iterations of RANSAC. The statistical rea-
soning2 is taken from (Heuel, 2004), p. 145.

5 MERGING OF IMAGE REGIONS

So far, our approach can only handle with merging of re-
gions. If the image is undersegmented in some image parts,
i. e. the region covers two or more objects, a splitting crite-
rion must be defined to separate this region parts again. We
suggest to search for several dominant planes and to split
the regions according to the intersections of these planes.
We did not realize the splitting yet, so we only propose our
merging strategy.

We determine a region adjacency graph and check for each
adjacent pair of regions R1 and R2 if a merging of the re-
gions can get accepted. The first test is on equality of the
two corresponding estimated planes. We realized that our
derived point cloud is too noisy for such statistical reason-
ing. Therefore, we consider a second test, where we de-
termine the best fitting plane through the set of 3D points
from both regions and then we check, if the new plane has
a normal vector n12 which is similar to the normal vectors
n1 and n2 of the two previous planes:

6 (n12,n1) < θ ∧ 6 (n12,n2) < θ. (5)

In our experiments, we used θ = 30o, which leads to rea-
sonable results with respect to buildings. If one is inter-
ested in each individual roof plane, θ should not be more
than 10o. If other applications cannot depend on such a
heuristically chosen parameter, we suggest to adapt this
condition by a MDL-based approach, cf. (Rissanen, 1989).
Then, two regions should be merged, if the encoding of
data would decrease when merging.

2SUGR: Statistically Uncertain Geometric Reasoning, www.ipb.uni-
bonn.de/projects/SUGR

Figure 4: Steps of improving image segmentation. In the
upper row, we show the reference image and its initial seg-
mentation. In the bottom row, we show at the left all big
regions from the initial partition (in white) and the final
segmentation including the MDL-based and the geometry-
based grouping of regions. There, the gray-shadowed re-
gions have been merged on the basis on geometric proper-
ties.

Until this point, we did not consider small regions whose
dominant planes cannot be estimated reliably. Now, we
also merge them, too. Small holes can easily merge with
their surrounding region, but all others may be merged ac-
cording to an intensity-based criterion. We implemented a
MDL-based strategy according to (Pan, 1994), where we
additionally stop the merging as soon as the minimum size
of a region has been reached. As alternatives, we could
also use strategies for irregular pyramid structures, e. g.
(Guigues et al., 2003), which is based on similarity of color
intensities or (Drauschke, 2009) which is based on scale-
space analysis. Resulting image segmentation is shown in
fig. 4.

6 EXPERIMENTS

We have tested our segmentation scheme on 28 extracts of
aerial images with known projection matrices showing ur-
ban scenes in Germany and Japan. The images from Ger-
many were taken in early spring when many trees are in
blossom, but are not covered by leaves yet. The 3D points
matched at such vegetation objects are widely spread, cf.
fig. 3. In most cases, the corresponding image parts are
oversegmented, so that no dominant planes have to get es-
timated. There is almost no vegetation in the Japanese
images, but the ground is often dark from shadows. As
mentioned earlier, we have problems with finding precise
3D points in lawn and shadow regions, but with respect to
building extraction (i. e. segmenting the major roof parts),
our approach achieves satisfying results cf. fig. 5. We are
convinced to get better results for matching in dark image
parts, if a local enhancement is used to brighten these parts
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RGB aerial image extracts

Initial watershed segmentations

Improved watershed segmentations

Figure 5: Results of simple building scenes. Again, the
gray-shadowed regions have been merged on the basis on
geometric properties.

in a preprocessing step, e. g. (Zhao and Lei, 2006). A fur-
ther improvement should be acchieved, if the whole proce-
dure is repeated, because the MDL-based merged regions
are now big enough for determination of their geometric
properties.

The noise of the point cloud, which we derive from the
semiglobal matching does not disturb the merging of im-
age regions. Considering aerial images, we are faced with
large and often planar objects. There, our plane estimation
is good enough, because we do not have to many outliers.
Otherwise, the plane estimation should be done by a robust
estimator. If different object parts have been segmented
as one region, then the most dominant plane of the com-
bined region often does not represent one of these object
parts. This shows us, that we need to focus in the future
on an algorithm for detecting multiple planes (e. g. analy-
sis of the best five planes from RANSAC) and a splitting
routine. Furthermore, there are objects as trees or dorm-
ers which violate our assumption of having one planar sur-
face. Therefore, we consider to adapt our plane estimation
towards extracting general geometric primitives as planes,
cylinders, cones and spheres, cf. (Schnabel et al., 2007).

With respect to facade images, we have big trouble with
our plane estimation. We ascribe this fact to two major
reasons. First, the reconstruction part is challenged by ho-
mogenous facades and mirroring or light transmitting win-

Figure 6: Facade image and different views on fitted planes
for hand-labeled object parts. Wall components are drawn
in yellow, windows in blue and (if opened) in green, bal-
cony parts in magenta. The planes of overhanging build-
ing parts are well distinguishable, but the window planes
(if not opened) are very close to its surrounding wall parts.
The mirroring and light transmission effects in the window
sections lead to geometrically instable plane estimations.

dows. Both cases lead to too many outliers. And secondly,
the noise of the complete point cloud is too high to differ
between planes in the object space, which are parallel, but
only a view centimeters apart. Fig. 6 shows a facade image
and three views on the dominant planes of given annotated
objects. In this case, the supporting points may have a dis-
tance of 4 cm to the fitting plane. Dominant planes with
distances of more than half of a meter are clearly separable
from each other.

7 CONCLUSION AND OUTLOOK

We presented a novel approach for improving image seg-
mentations for aerial imagery by combining the initial wa-
tershed segmentation with information from a 3D point
cloud derived from two or three views. For each region,
we estimate the most dominant plane, and only the plane
parameters are used to trigger the merging process of the
regions. With respect to building extraction, our algorithm
achieves satisfying results, because the ground and major
building structures are better segmented.

In the next steps, we want to search for multiple planes for
each region, and we want to implement a splitting routine,
so that regions can either get merged or split. If we have
such a reliable function, we would start the region merging
using the MDL criterion based on the image intensities.
So, we can search for geometric descriptions in all, and not
only in the big image regions. Furthermore, our approach
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can get improved, if we estimate more general geometric
primitives for representing the object’s surfaces.

Acknowledgements

This work was done within the project Ontological scales
for automated detection, efficient processing and fast visu-
alisation of landscape models, which is supported by the
German Research Foundation (DFG). The authors would
also like to thank our student Frank Münster for preparing
the data and assisting the evaluation.

REFERENCES

Abraham, S. and Hau, T., 1997. Towards autonomous
high-precision calibration of digital cameras. In: SPIE,
pp. 82–93.

Binford, T., 1981. Inferring surfaces from images. Artifi-
cial Intelligence 17(1-3), pp. 205–244.

Drauschke, M., 2009. An irregular pyramid for multi-scale
analysis of objects and their parts. In: GbRPR’09, LNCS
5534, pp. 293–303.

Drauschke, M., Schuster, H.-F. and Förstner, W., 2006. De-
tectability of buildings in aerial images over scale space.
In: PCV’06, IAPRS 36 (3), pp. 7–12.

Fischer, B. and Buhmann, J. M., 2003. Path-based cluster-
ing for grouping smooth curves and texture segmentation.
PAMI 25(4), pp. 513–518.

Fischler, M. and Bolles, R., 1981. Random sample con-
sensus: A paradigm for model fitting with applications to
image analysis and automated cartography. ACM 24(6),
pp. 381–395.

Förstner, W. and Gülch, E., 1987. A fast operator for de-
tection and precise location of distinct points, corners and
centers of circular features. In: ISPRS Conf. on Fast Pro-
cessing of Photogramm. Data, pp. 281–305.

Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q. and
Pollefeys, M., 2007. Real-time plane-sweeping stereo with
multiple sweeping directions. In: CVPR’07.

Guigues, L., Le Men, H. and Cocquerez, J.-P., 2003. The
hierarchy of the cocoons of a graph and its application to
image segmentation. Pattern Rec. Lett. 24(8), pp. 1059–
1066.

Heinrichs, M., Rodehorst, V. and Hellwich, O., 2007. Ef-
ficient semi-global matching for trinocular stereo. In:
PIA’07, IAPRS 36 (3/W49A), pp. 185–190.

Heuel, S., 2004. Uncertain Projective Geometry. LNCS
3008, Springer.

Hirschmüller, H., 2005. Accurate and efficient stereo pro-
cessing by semi-global matching and mutual information.
In: CVPR, pp. II: 807–814.

Hoffman, D. D. and Richards, W. A., 1984. Parts of recog-
nition. Cognition 18, pp. 65–96.

Kanade, T. and Okutomi, M., 1994. A stereo matching al-
gorithm with an adaptive window: Theory and experiment.
PAMI 16(9), pp. 920–932.

Khoshelham, K., 2005. Region refinement and paramet-
ric reconstruction of building roofs by integration of im-
age and height data. In: CMRT’05, IAPRS 36 (3/W24),
pp. 3–8.

Läbe, T. and Förstner, W., 2006. Automatic relative ori-
entation of images. In: Proc. 5th Turkish-German Joint
Geodetic Days.

Lowe, D., 2004. Distinctive image features from scale-
invariant keypoints. IJCV 60(2), pp. 91–110.

Martin, D., Fowlkes, C. and Malik, J., 2004. Learning
to detect natural image boundaries using local brightness,
color, and texture cues. PAMI 26(5), pp. 530–549.

Mayer, H. and Reznik, S., 2005. Building façade interpre-
tation from image sequences. In: CMRT’05, IAPRS 36
(3/W24), pp. 55–60.

Pal, N. R. and Pal, S. K., 1993. A review on image seg-
mentation techniques. Pattern Rec. 26(9), pp. 1277–1294.

Pan, H.-P., 1994. Two-level global optimization for image
segmentation. P&RS 49(2), pp. 21–32.

Rissanen, J., 1989. Stochastic Complexity in Statistical
Inquiry. World Scientific.

Rottensteiner, F. and Jansa, J., 2002. Automatic extraction
of buildings from lidar data and aerial images. In: CIPA,
IAPRS 34 (4), pp. 569–574.

Sahoo, P., Soltani, S. and Wong, A., 1988. A survey of
thresholding techniques. CVGIP 41(2), pp. 233–260.

Schnabel, R., Wahl, R. and Klein, R., 2007. Efficient
ransac for point-cloud shape detection. Computer Graph-
ics Forum 26(2), pp. 214–226.

Sohn, G., 2004. Extraction of buildings from high-
resolution satellite data and lidar. In: 20th ISPRS
Congress, IAPRS 35 (B3), pp. 1036–1042.

Tao, H. and Sawhney, H. S., 2000. Global matching cri-
terion and color segmentation based stereo. In: Workshop
on Applications of Computer Vision, pp. 246–253.

Treisman, A., 1986. Features and objects in visual process-
ing. Scientific American 225, pp. 114–125.

Tuytelaars, T. and Van Gool, L., 2000. Wide baseline
stereo matching based on local, affinely invariant regions.
In: BMVC, pp. 412–422.

Yang, Q., Wang, L., Yang, R., Stewénius, H. and Nistér,
D., 2009. Stereo matching with color-weighted correla-
tion, hierarchical belief propagation, and occlusion han-
dling. PAMI 31(3), pp. 492–504.

Zhao, J. and Lei, S., 2006. Automatic digital image en-
hancement for dark pictures. In: ICASSP, pp. II: 953–956.

216

       CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



REFINING BUILDING FACADE MODELS WITH IMAGES

Shi Pu and George Vosselman

International Institute for Geo-Information Science and Earth Observation (ITC)
Hengelosestraat 99, P.O. Box 6, 7500 AA Enschede, The Netherlands

spu@itc.nl, vosselman@itc.nl

Commission III/4

KEY WORDS: building reconstruction, data fusion, image interpretation

ABSTRACT:

Laser data and optical data have a complementary nature to 3D features’ extraction. Building reconstruction by fusion of the two data
sources can reduce the complexity of approaches from either side. In this paper we present a model refinement method, which uses
the strong lines extracted from close-range images to improve building models reconstructed from terrestrial laser point clouds. First,
model edges are projected from model space to image space. Then significant line features are extracted from an image with Canny
edge detector and Hough transformation. Each model edge is then compared with its neighboring image lines to determine the best
match. Finally the model edges are updated according to their corresponding image lines. The refinement process not only fixes certain
geometry errors of the original models, but also adapts the models to the image data, so that more accurate texturing is achieved.

1 INTRODUCTION

The technique of automated building facade reconstruction is use-
ful to various applications. For urban planning, building facade
models provide important references to the city scenes from the
street level. For historical building documentation, a large num-
ber of valuable structures are contained on the facades, which
should be recorded and reconstructed. For all virtual reality ap-
plications with users’ view on the street, such as virtual tourism
and computer games, the accuracy and/or realistic level of the
building facade models are vital to successfully simulate an ur-
ban environment.

A number of approaches (Dick et al., 2001, Schindler and Bauer,
2003, Frueh et al., 2005, Pollefeys et al., 2008) are available for
reconstructing building facades automatically or semi-automatically.
Close range image and terrestrial laser point cloud are the com-
monly used input data. Image based building reconstruction has
been researched for years. From multiple 2D images captured
from different positions, 3D coordinates of the image features
(lines for example) can be calculated. Although acquisition of
images is cheap and easy, the difficulties of image understand-
ing make it still difficult to automate the reconstruction using
only images. Laser altimetry has been used more and more in
recent years for automated building reconstruction. This can be
explained by the explicit and accurate 3D information provided
by laser point clouds. Researches (Vosselman, 2002, Frueh et al.,
2004, Brenner, 2005) suggest that the laser data and images are
complementary to each other, and efficient integration of the two
data types will lead to a more accurate and reliable extraction of
three dimensional features.

In the previous work we presented a knowledge based building
facade reconstruction approach, which extracts semantic facade
features from terrestrial laser point clouds and combines the fea-
ture polygons to water-tight polyhedron models (Pu and Vossel-
man, 2009). Some modeling errors still exist, and some of them
can hardly be corrected by further exploiting the laser data. In
this paper, we present a model refinement method which uses
strong line features extracted from images to improve the build-
ing facade models generated from only terrestrial laser points.
The refinement not only fixes the models’ geometry errors, but

also solves inconsistencies between laser and image data, so that
a more accurate texturing can be achieved.

This paper is organized as follows. Section 2 gives an overview
of the presented method. Section 3 provides the context research
of building reconstruction from terrestrial laser scanning. Section
4 explains the preprocessing steps such as perspective conversion
and spatial resection, to make images usable for refining mod-
els. Section 5 elaborates the image processing algorithms used
for significant line extraction and the matching and refinement
strategies. Experiments on three test cases are discussed in sec-
tion 6. Some conclusions and outlooks are drawn in the final
section.

2 METHOD OVERVIEW

A building facade model may contain various errors. For a model
reconstructed from terrestrial laser points, the model edges may
have certain offset with their actual positions. These errors are
caused by gaps in laser points and the limitations of laser data
based reconstruction algorithms. Edges are delineated accurately
in images. After registering to the model space, image lines can
provide excellent reference from which the model edge errors can
be fixed. Another necessity of this refinement is to solve the in-
consistencies between the laser space and the image space, so that
accurate texturing can be achieved.

Before starting the refinement, a 2D image needs to be referenced
to the 3D model space, a problem often referred as spatial resec-
tion in photogrammetry. We use the standard resection solution
of collinearity equations, which requires minimum three image
points with their coordinates in model space. To find significant
line features from an image, we first detect edges using the Canny
algorithm (Canny, 1986), then apply the Hough transform to fur-
ther extract strong line features from edges. Then model edges
are projected to the image space and matched with the image
lines. The best match is determined by the geometric properties
of candidates and the geometric relations between candidates and
the model edge. Finally each model edge with successful match-
ing is projected to the matched image line accordingly, and model
edges without any matching are also adjusted to maintain a well
shape. Figure 1 gives a flowchart of the refinement process.
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Figure 1: Model refinement process

3 BUILDING RECONSTRUCTION FROM
TERRESTRIAL LASER SCANNING

Pu and Vosselman (2009) presents an automatic approach to ex-
tract building facade features from a terrestrial point cloud. The
method first defines several important building features based on
knowledge about building facades. Then the point cloud is seg-
mented to planar segments. Finally, each segment is compared
with building feature constraints to determine which feature this
segment represents. The feature extraction method works fine for
all facade features except for windows, because there are insuffi-
cient laser points reflected from window glass. Therefore a hole
based window extraction method is introduce. Then polygons
to extracted feature segments and the merging of polygons to a
complete facade model. An advantage of this approach is that
semantic feature types are extracted and linked to the resulting
models, so that i) it is possible to get faster visualization by shar-
ing the same texture for same feature type; ii) polygons can be
associated with various attributes according to its feature type.

Figure 2 shows a building facade model which is reconstructed
with the above approach. The generated building outline seems to
coincide with laser points well. However, if we take a close look,
it is easy to identify several mistakes from the model. By analyz-
ing more models, we figured two main reasons for the modeling
errors. They are:

• Limitations of outline generation method. For example, side
wall’s eave can ”attract” the side boundary edges of the fa-
cade, and result in a slight wider polygon in horizontal di-

rection. The almost vertical or horizontal edges are forced
to be vertical or horizontal; however, this is not always ben-
eficial.

• Poor scanning quality. Due to the scanning strategy of static
laser scanner, complete scanning of a scene seems impossi-
ble. There are always some parts which contain very sparse
laser points, because of their visibility to any of the scan po-
sitions. Occluded zones without any laser points are also
usual in laser point clouds. The lack of reference laser in-
formation leads to gaps in the final model. For example, the
lower part of roofs are hardly scanned because the eaves oc-
clude the laser beams. The directly fitted roof polygons are
smaller than their actual sizes. Sometimes these gaps are
foreseen and filled using knowledge. For example, we know
a roof must attach to the upper side of an eave, so we can ex-
tend the roof polygon so that it intersects the eave. However,
knowledge based estimation are not always correct.

Figure 2: A reconstructed building facade model, shown together
with segmented laser points

4 PREPROCESSING

In order to extract straight lines, an image need to be in central
perspective and undistorted. The exterior orientation parameters
and focal length should be determined so that 3D model edges can
be projected to the same image space for comparison. These are
the two objectives of the preprocessing step. An omni-directional
panoramic image called Cyclorama is used in our method devel-
opment, therefore conversion of Cyclorama to central perspective
are explained first in 4.1. A semi-automatic approach for exterior
orientation calculation is given in 4.2.

4.1 Perspective conversion of Cyclorama

The Cycloramas are created from two fisheye images with a field
of view of 185 degree each (van den Heuvel et al., 2007). The
camera is turned 180 degree between the two shots. The Cy-
cloramas we used contain image data for the full sphere stored
in a panorama image of 4800 by 2400 pixels, corresponding to
360 degree in horizontal direction and 180 degree in vertical di-
rection. Thus, on both directions the angular resolution is 0.075
degree per pixel. With the integrated GPS and IMU devices, all
Cycloramas are provided with north direction aligned at x=2400
and horizontal plane aligned at y=1200.

The equiangular projection of the fisheye camera model is de-
scribed in Schneider and Maas (2003). The projection of Cy-
cloramas to central projective can be understood as projecting a
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panoramic sphere part to an assumed plane. First, we make two
lines by connect the image acquisition point (perspective center)
with the most left and most right model vertices. The angles of
the two lines with north direction derive the longitude boundaries
of the region of interests (ROI). In practice we widen the ROI
to both left and right by 100 pixels, because the image acquisi-
tion positions provided by GPS are not so reliable. The princi-
pal point is set on the sphere equator, with middle longitude of
the two boundaries. Assuming the perspective center coincide in
both perspectives, the pixels inside the ROI are converted from
panoramic perspective to central perspective according to the fol-
lowing equations:

α =
xp − x0

r
(1)

β =
yp − y0

r
(2)

tan α =
xc − x0

f
(3)

tan β =
(yc − y0)× cos α

f
(4)

where (xp, yp) is the pixel coordinate in panoramic perspective;
(xc, yc) is the pixel coordinate in central perspective; (x0, y0) is
the principal point; r is the angle resolution; α and β represent
the longitude and latitude of the pixel on the panoramic sphere;
f is the distance of the panoramic sphere center to the assumed
plane, can also be seen as the focal length of the converted cen-
tral perspective image. With equation 1 to 4 the unique relation
between (xp, yp) and (xc, yc) can be determined.

4.2 Spatial resection

In order to get an unique solution for the six unknown exterior ori-
entation parameters, at least observations of three image control
points should be available to form 6 collinearity equations. Fig-
ure 3 illustrates the interface for selecting tie points from a laser
point cloud and an image. In this implementation it is required
to select at least four tie pairs, with one pair for error checking.
If more than four pairs are selected, a least squares adjustment is
performed to obtain better results.

Figure 3: Selecting tie points for spatial resection

5 MODEL REFINEMENT

5.1 Extraction of significant lines from images

The Canny edge detector algorithm (Canny, 1986) is used for ini-
tial line extraction (see Figure 4(a) and Figure 4(b)). Here two

threshold parameters should be specified for edge linking and
finding initial segments of strong edges. Thresholds set too high
can miss important information. On the other hand, thresholds set
too low will falsely identify irrelevant information as important.
It is difficult to give a generic threshold that works well on all im-
ages. In addition to the conventional Canny algorithm, we apply
a histogram analysis on the image gradients in order to adaptively
specify the threshold values. However, factors such as illumina-
tion, material, and occlusions still result in many irrelevant edges.
In the other hand, some desired edges may not be extracted due
to the nature of images. For example, outlines of a wall with very
similar color with surrounding environment will not be detected.
Outlines inside shadow areas can hardly be extracted either.

Strong line features are further extracted from Canny edges by
Hough transformation (see Figure 4(c)). Because of the unpre-
dicted number of edges resulted from the previous step, a lot of
irrelevant Hough line segments may also be generated. To min-
imize the number of these noise lines, instead of adjusting the
thresholds of Hough transformation, we sort all the Hough line
segments according to their length, and only keep a certain num-
ber of longest ones. This is based on the assumption that building
outlines are more the less the most significant edges in an image.
The limitations of this assumption are already anticipated before
applying to practice. For example, large and vivid patterns on a
wall’s surface can result in more significant line features than the
wall edges.

(a) Raw image (b) Canny edges (c) Hough lines

Figure 4: Extracting significant lines from an image

5.2 Matching model edges with image lines

To match model edges and the image lines, both should be located
either in the 3D model space or 2D image space. We have chosen
the latter space, because projecting object from 3D to 2D is much
easier than the other way around. With the calculated exterior
orientation parameters from spatial resection and the focal length,
model edges can be projected to the image space according to the
collinearity equations (see the blue lines in Figure 5).

Assuming a relatively accurate exterior orientation and the focal
length are available, the best matched image Hough line for a
model edge is determined in two stages:

1. Candidates of best matching image lines are filtered by their
parallelism and distance with the model edge (see the green
lines in Figure 5). In other words, the angle between a candi-
date with the model edges should be smaller than a thresh-
old (5 degree for example), and their distance should also
be smaller than a threshold (half meter for example). Note
the the actual distance threshold is in pixel, which are also
”projected” from a 3D distance on the wall plane. If the ex-
terior orientation and focal length are perfect, most model
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edges should very well coincide with a strong image line.
However, in practice there are often a small offset and an
angle between a model edge and its corresponding image
line. The optimal angle and distance threshold value are de-
pendent on the quality of exterior orientation parameters and
focal length.

2. A best match is chosen from all candidates according to
either the collinearity of the candidates or the candidate’s
length (see the purple lines in Figure 5). It is a common
case that a strong line is split to multiple parts by occlusions
or shadows. If a number of hough line segments belong to
a same line, we set this line as the best match. If not, the
longest candidate is chosen as the best match.

Figure 5: Matching model edges with image lines (Blue: model
edges’ projection in the image; red: Hough lines; green: candi-
dates; purple: the best matches)

No spatial index is established in the image space to improve the
comparison efficiency, because the search space is already local-
ized to a single building facade, which includes only dozens of
edges and Hough lines.

A limitation of this matching method is that it can hardly de-
termine the correct corresponding edge if too many similar line
features are within searching range. Simply comparing the geom-
etry properties of position, direction and length are not sufficient
in this case. For example, the eaves in Figure 5 result in many
significant lines and they are all parallel and close to the wall’s
upper boundary edges. These eave lines can be distinguished if
the eave is also reconstructed and included in the facade model,
but ambiguity caused by pure color pattern is still difficult to be
solved.

5.3 The refinement strategy

After matching, most model edges should be associated with a
best matched image line. These model edges are updated by pro-
jecting to their best matched image line. There are some model
edges which don’t match any image lines. If no change is made
to an edge with its previous or next edge changed, strange shapes
like sharp corners and self-intersections may be generate. There-
fore interpolations of the angle and distance change from the pre-
vious and next edges, are applied to the edges without matched
image lines. With these refinement strategies, an original model

is updated to be consistent with the geometry extracted from im-
ages, and the model’s geometry validity and general shape are
also maintained.

Finally, the refined model edges in image space need to be trans-
ferred back to the model space. Because the model edges are only
moved on their original 3D planes, which is known, the collinear-
ity equations are used again to calculate the new 3D positions of
all the modified model vertices.

6 TEST CASES

In this section, three data sets are experimented with the presented
refinement method. The building models are produced with the
reconstruction approach introduced in Section 3. All the images
are originally provided as Cycloramas. The central perspective
conversion and exterior orientation calculation follow the pro-
cesses explained in Section 4.

6.1 The restaurant house

The inconsistencies between the model edges and image lines in
Figure 6 are mainly due to inaccurate exterior orientation of the
image. It is difficult to pick an image point accurately by man-
ual operation. Picking the corresponding point in a laser point
cloud is also a difficult job. Automated texturing of building fa-
cade models is desired in the context of our research. The quality
of the exterior orientation is a key issue to the texturing effect.
Even a minor inaccuracy in the exterior orientation parameters
can lead to poor texture result, as shown in Figure 7(a). Apply-
ing our refinement method, several model edges are linked with
their matched image lines (see Figure 6(b)), and are updated ac-
cordingly. The texture result is significantly improved as shown
in Figure 7(b), with the sky’s background color removed. How-
ever, the middle top part of the facade model is still not refined,
because this image part is too blurred to output a Hough line.

(a) Hough lines (b) Matching

Figure 6: Matching model edges with image lines for refining the
restaurant house’s model

6.2 The town hall

The upper boundary of the town hall in Figure 8(a) contains a
lot of tiny details, which are well recorded by laser scanning and
modeled as sawtooth edges in the building facade model. Instead
of adjusting the outline generation parameters in the reconstruc-
tion stage, we can also use the presented image based refinement
to smooth the model outline. Figure 8(b) shows the matching
step. The model’s upper edges are successfully matched to the
strong lines, which actually come from the eave. In this example
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(a) Before refinement (b) After refinement

Figure 7: Comparison of textured restaurant house model before
and after refinement

the wall’s upper boundary is not detected in the image, because it
is occluded from sunlight by the eaves when the image was taken.

The left boundary of the building model is modeled correctly
from laser points by intersecting two large wall planes. How-
ever, in practice it is matched to a strong contrast caused by a
water pipe on the wall (see Figure 8(b)). This again, reveals the
limitations of this refinement method.

(a) Raw image (b) Matching

Figure 8: Matching model edges with image lines for refining the
town hall’s model

6.3 The wall with high windows

In this example, the refinement is applied to improve the windows
extracted from the holes from laser points of a wall (Pu and Vos-
selman, 2009). The contrast of a window and its surrounding wall
are usually rather obvious in optical data. Strong line features are
frequently found at the windows’ boundaries and frames, and can
be used to refine the information from the laser altimetry. Figure
9(b) shows the window rectangles extracted from laser points,
which contain a lot of errors due to limitation of segmentation and
modeling algorithms. In Figure 9(a) we apply the same match-
ing stretchy for refinement purpose, and the final result in shown
in Figure 9(c). Most windows’ boundaries are well corrected ac-
cording to the image lines. The second left window in the upper
row is not improved, because the difference between the modeled
shape and the actual shape is too large to correlate them. There
are some remaining errors, such as the first, third and sixth win-
dow (from left to right) in the lower row. This is because the
parameters of Hough transform are too strict to generate any can-
didate line.

The textured final model after manual adjustment is shown in Fig-
ure 10. Without the refinement, 42 vertices need to be manually
adjusted. Only 10 vertices need to be adjusted after the refine-
ment. Note that the window rectangles are intruded inside the

wall plane, and the intrusion offset is derived from laser points
reflected from window glass and window frames.

(a) Matching

(b) Before refinement

(c) After refinement

Figure 9: Matching and refining window boundaries

6.4 Summary

The effectiveness as well as limitations of our refinement method
are examined through the three test cases. We realize that the
refining effect relies on the following prerequisites:

• Accurate exterior and interior orientations. In particular, the
selected tie points for spatial resection should be sufficient
(four or more), and should be distributed equally in both hor-
izontal and vertical directions to minimize the computation
error.

• No large occlusions in front of the building facade.
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Figure 10: A textured building facade model with intruded win-
dows

• Stronger contrast by geometries than optical factors (illumi-
nation, color pattern, etc.).

Some limitations of the current refinement method have been lo-
cated at:

• It cannot solve ambiguities caused by multiple lines with
similar geometry properties.

• It cannot distinguish whether a model-image inconsistency
is caused by reconstruction errors or inaccurate exterior ori-
entation.

Knowledge based reasoning of the image information is the key
to the first problem. The current matching stretchy is rather local.
Experiments show that the offset direction between the model
edges and their matched image lines are mostly same, which
is obviously caused by inaccurate exterior orientation. A globe
matching process (RANSAC over offsets for example) should be
able to estimate the correct exterior orientations.

7 CONCLUSIONS AND OUTLOOK

In this paper we present a model refinement method, which uses
the lines extracted from close-range images to improve building
models reconstructed from terrestrial laser point clouds. With
the refinement, several modeling errors caused by either gaps in
laser data or reconstruction algorithm, are corrected with image
information. Texturing is also improved after the refinement.

Nowadays it is more and more common for acquisition platforms
to acquire laser data and optical data simultaneously. Line ex-
traction from images is very accurate, while laser points are more
suitable to extract planar features. Efficient fusing of laser points
and image naturally avoids many barriers for building reconstruc-
tion from either sides. The attempt through our refinement method
shows promising future for automated building reconstruction by
fusing laser altimetry and optical methods.

Two directions of the future work: knowledge based image rea-
soning and global matching, have been suggested earlier. Be-
sides, nowadays the mainstream image acquisition systems usu-
ally determine exterior orientations via GPS and IMU, but they

are not accurate. If we use the laser points as reference data,
and match image lines with model edges from laser point clouds
(similar to this research), there should be enough control points
for estimating the accurate exterior orientations for images.
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ABSTRACT:

We introduce a new unsupervised segmentation method adapted to describe façade shapes from a single calibrated street level image.
The image is first rectified thanks to its vanishing points to facilitate the extraction of façade main structures which are characterized
by a horizontal and vertical gradient accumulation which enhances the detection of repetitive structures. Our aim is to build a hierarchy
of rectangular regions bounded by the local maxima of the gradient accumulation. The algorithm recursively splits horizontally or
vertically the image into two parts by maximizing the total length of regular edges until the radiometric content of the region hypothesis
corresponds to a given model (planar and generalized cylinders). A regular edge is a segment of a main gradient direction that effectively
matches to a contour of the image. This segmentation could be an interesting tool for façade modelling and is in particular well suited
for façade texture compression.

1 INTRODUCTION

1.1 Context

Façade analysis (detection, understanding and reconstruction)
from street level imagery is currently a very active research do-
main in the photogrammetric computer vision field. Indeed, it
has many applications. Façade models can for instance be used
to increase the level of details of 3D city models generated from
aerial or satellite imagery. They are also useful for a compact
coding of façade image textures for streaming or for an embed-
ded system. The characterization of stable regions in façades is
also necessary for a robust indexation and image retrieval.

1.2 Related work

Existing façade extraction frameworks are frequently specialized
for a certain type of architectural style or a given texture appear-
ance. In a procedural way, operators often step in a pre-process
to split correctly the image in suitable regions. Studied images
indeed are assumed to be framed in such a way that they exactly
contain relevant information data such as windows on a clean wall
background.

Most building façade analysis techniques try to extract specific
shapes/objects from the façade: windows frame, etc. Most of
them are data driven, i.e. image features are first extracted and
then some models are matched with them to build object hypothe-
ses. Some other model-driven techniques try to find more com-
plex objects which are patterns or layouts of simple objects (e.g.
alignments in 1D or in 2D). Higher level techniques try to gener-
ate directly a hierarchy of complex objects composed of patterns
of simple objects usually with grammar-based approaches. Those
methods generally devote their strategy to a special architectural
style.

1.2.1 Single pattern detection Strategies to extract shape hy-
potheses abound in recent works. (C̆ech and S̆ára, 2007), for in-
stance, propose a segmentation based on a maximum a posteriori

labeling. They associate each image pixel with values linked with
some configuration rules. They extract a set of non-overlapping
windowpanes hypotheses, assumed to form axis-parallel rectan-
gles of relatively low variability in appearance. This restriction
does not take into account lighting variations. With a supervised
classification-based approach, (Ali et al., 2007) extracted win-
dows width an adaboost algorithm. In the same fashion, (Wenzel
and Förstner, 2008) minimize user interaction with a clustering
procedure based on appearance similarity.

Assuming the regularity of the façade, (Lee and Nevatia, 2004)
use a gradient profile projection to locate window edges coordi-
nates. They first locate valley between two extrema blocks of
each gradient accumulation profile and they roughly frame some
floors and windows columns. Edges are then adjusted on local
data information. Their results are relevant for façades whose
background does not contain any contours such as railings, bal-
conies or cornices.

1.2.2 1D or 2D grid structures detection (Korah and Ras-
mussen, 2007, Reznik and Mayer, 2007) use linear primitives to
generate rectangle hypotheses for windows. A Markov Random
Field (MRF) is then used to constrain the hypotheses on a 2D
regular grid. (Korah and Rasmussen, 2007) generate their rect-
angular hypotheses in a similar way as (Han and Zhu, 2005):
they project on image 3D planar rectangles. (Reznik and Mayer,
2007) learn windows outline from training data and use as hy-
potheses for window corners characteristic points.

1.2.3 Façade grammars A façade grammar describes the
spatial composition rules of complex objects (e.g. grid structure)
and/or simple objects to construct a façade. Approaches based
on grammars succeed in describing only façades corresponding
to the grammar. Nevertheless, to obtain a detailed description a
specific grammar is required per type of architecture (e.g. Haus-
manian in the case of Parisian architecture). The drawback is that
many grammars are necessary to describe the variety of building
architectures in a general framework.



For instance, to detect windows on simple buildings, (Han and
Zhu, 2005) integrates rules to produce patterns in image space. In
particular, this approach integrates a bottom-up detection of rect-
angles coupled with a top-down prediction hypotheses taken from
the grammar rules. A Bayesian framework validates the process.
(Alegre and Dellaert, 2004) look for rectangular regions with ho-
mogeneous aspect by computing radiometry variance. (Müller et
al., 2007) extract an irreducible region to summarize the façade
by periodicity in vertical and horizontal directions. Their results
are significant with façades that effectively contain regular win-
dow grid pattern or suitable perspective effects. (Ripperda, 2008)
fixes her grammar rules according to prior knowledge: she be-
forehand computes distribution of façade elements from a set of
façade images.

These approaches either use a too restrictive model dedicated to
simple façade layout, or are too specialized for a particular kind
of architecture. They thus would hardly deal with usual Parisian
façades such as Hausmanian buildings or other complex architec-
tures with balconies or decoration elements.

Our process works exclusively on a single calibrated street-level
image. Although we could have, we voluntarily did not introduce
additional information such as 3D imagery (point clouds, etc.)
because for some applications such as indexation, image retrieval
and localization, we could just have a single photo acquired by a
mobile phone.

2 OUR MODEL BASED SEGMENTATION STRATEGY

Most of the aforementioned approaches provide good results
for relatively simple single building. Only a few of them have
addressed very complex façade networks such as the ones en-
countered in European cities where the architectural diversity and
complexity is large. Our work is upstream from most of these
approaches: we do not try to extract semantic information but
we just propose a façade segmentation framework that could be
helpful for most of these approaches. This framework must firstly
separate a façade from its background and neighboring façades,
and then, identify intra-façade regions of specific elementary tex-
ture models. These regions must be robust to change in scale or
point of view.

Our strategy requires horizontal and vertical image contour align-
ments. We thus first need to rectify images in the façade plane:
vertical and horizontal directions in the real world respectively
become vertical and horizontal in the image. To do so, we ex-
tract vanishing points which provide an orthogonal basis in object
space useful to resample the image as required.

Regarding segmentation, the core of our approach relies on a re-
cursive split process and a model based analysis of each subdi-
vided regions. Indeed we do not intend to directly match a model
to the whole façade, but we build a tree of rectangular regions
by recursively confronting data with some basic models. If a re-
gion does not match with any of them, it is split again, and the
two sub-regions are analyzed as illustrated by the decision tree
on figure 1. Our models are based on simple radiometric criteria:
planes and generalized cylinders. Such objects are representative
of frequent façade elements like window panes, wall background
or cornices.

We start each process with the whole image region. We test if
its texture matches our planar model. If it does, then the process
stops: we have recognized a planar and radiometrically coherent
region in the image. Otherwise, we test if it matches our gen-
eralized cylinder model. In the same manner, the process stops

Vanishing points

Planar Model ?

Cylindric Model ?

Split Image ?

input image

Yes

Yes

No

No

Sub-image 1

sub-image 2

Planar
Model

Cylindric
Model

Unknown
Model
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INPUT PROCESS OUTPUT

Planar Rectifications

Extraction

Rectification 1
Rectification 2

Rectification n
...

Model Matching ?

Figure 1: Our algorithm recursively confronts data with models.
If region does not match with any proposed model, we split it.

on the cylinder model. Otherwise the region is not considered
as homogeneous (in the sense of our models) and it is split in
two sub-regions. The process recursively analyzes these two sub-
regions exactly as the same way as the large region. Thus, we
build a segmentation tree whose leaves are planar or generalized
cylinder models. The following sections explain each step of this
algorithm.

3 RECTIFICATION PROCESS

3.1 Extracting Vanishing Points

Our rectification process relies on vanishing point lines detected
by (Kalantari et al., 2008). They project relevant image segments
on the Gaussian sphere: each image segment is associated with
a point on the sphere. Their algorithm relies on the fact that
each circle of such a 3D-point distribution gathers points asso-
ciated with the same vanishing point in the image. Then they
estimate the best set of circles that contains the highest number
of points. The more representative circles are assumed to pro-
vide main façade directions: the vertical direction and several
horizontal ones. Figure 2 upper-right shows some detected edges
that support main vanishing points: segments associated with the
same direction are drawn in the same color.

3.2 Multi-planar Rectification Process

We rectify our image in each plane defined by a couple of one
of the horizontal vanishing points and the vertical one. We then
project the image onto the plane. Figure 2 bottom right shows a
rectification result. Figure 2 bottom left shows rectified edges on
the façade plane.

Calibration intrinsic parameters are supposed to be known. Rec-
tified image is resampled in grey levels, but such a restriction
already provides some interesting perspectives.
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Figure 2: The rectification process. upper left: original image
only; upper right: original image with segments that support main
vanishing points (green and blue ones are those for the main ver-
tical direction, yellow and white ones for the main horizontal di-
rection and red ones for an aberrant vanishing point); bottom left:
rectified image with rectified segments that support the two se-
lected directions; bottom right: rectified image only

4 MODEL MATCHING

Given a region of a rectified image, we try to match two geomet-
ric models with data in increasing complexity order: the planar
model M1, then the generalized cylinders one M2. This de-
cision tree indeed provides a good compromise between quality
and compression rate.

To match an image region with a model, we simply count local
radiometric differences as follows. Let Ik be the sub-image at
region Rk of a façade image I . Sub-image Ik is described by
model M when the deviation NM(Ik) is small enough and if
this model is the simplest one. Deviation NM(Ik) is defined by
the number of pixels whose radiometry differs too much from the
model. Radiometric medians provide some significative robust-
ness: the influence of parasite structures such as tree branches or
lighting posts, is significantly reduced. Figure 3 illustrates mod-
els we use.

4.1 Planar Model

A planar model is an image with an uniform radiometry. LetM1

be the planar model of a sub-image Ik. It is defined by equation 1.

Figure 3: Description of our radiometric 2D-models

An instance of a planar model is depicted on the lower-right cor-
ner of figure 3.

M1 : ∀p ∈ Rk, Ik(p) = median(Ik) + ε(p) (1)

where ε(p) is the difference between the image Ik and the model
M1 at the pixel p. If this difference is smaller than an arbi-
trary threshold, it is tolerated. It refers to the acquisition noise
or some texture defects. Otherwise, the deviation NM(Ik) is in-
cremented.

4.2 Generalized Cylinder Model

A generalized cylinder model is designed either in columns (Mc
2)

or in rows (Ml
2). The model in columns is composed of medi-

ans of columns and the cylinder model in rows is composed of
medians of rows. They are is defined by equation 2. Functions
medianx and mediany respectively return the median of the
column at x abscissa and the row at y ordinate. Figure 3 shows
an instance of each generalized cylinder model.

∀(x, y) ∈ Rk,
Mc

2 : Ik(x, y) = medianx(Ik(x, y)) + ε(x, y)
Ml

2 : Ik(x, y) = mediany(Ik(x, y)) + ε(x, y)
(2)

where ε(x, y) is the difference between the image Ik and the
model M2 at the pixel (x, y). In the same manner as planar
model, the deviation NM(Ik) is incremented when this differ-
ence is greater than an arbitrary threshold.

5 SPLIT PROCESS BY ENERGY MAXIMIZATION

Given a region of a rectified image that does not match with any
model, we try to split it by measuring the internal gradient distri-
bution energy.

5.1 Generating splitting hypotheses

We select split hypotheses with a technique close to (Lee and
Nevatia, 2004). We accumulate x-gradient absolute values by
column and y-gradient absolute values by row, where x-gradient
and y-gradients are related respectively to vertical and horizontal
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edges. We use convolution with a discrete first order derivative
operator. Local extrema of these accumulations are our split hy-
potheses. This reinforces low but repetitive contrasts. Figure 4
illustrates this process.

Figure 4: Upper right and bottom left images respectively are
x-gradient and y-gradient. Bottom right image presents accumu-
lation profiles: green profile for x-gradient and red one for y-
gradient. extrema of this profiles are our split hypotheses: red
lines in upper left image.

Such a rough set of hypotheses supplies initial interesting seg-
mentation. (Lee and Nevatia, 2004) base their window detection
on similar rough segmentation. They almost use the same pro-
cedure except that they do not accumulate gradients in the same
orientation: they respectively treat x-gradient and y-gradient hor-
izontally and vertically. Thus they locate valley between two
extrema blocks of each gradient accumulation profile and they
frame some floors and windows columns. Their results were rel-
evant in façades composed of a fair windows grid-pattern distri-
bution on a clean background.

Main buildings structure are detected. Each repetitive objects are
present in vertical or horizontal alignment as common edges gen-
erate local extrema in accumulation profiles. Local gradient ex-
tremum neighborhood is set a priori. In our case, this neighbor-
hood is set to 30 centimeters. However this last grid-pattern usu-
ally is not enough by itself to summarize façade texture: repeti-
tive elements of our images are not necessarily evenly distributed.
Thus our split strategy relies on breaks between two façades or
inside one façade.

5.2 Choosing the best splitting hypotheses

The best splitting hypothesis maximizes its pixels number of reg-
ular edges in each of the two sub-region. A regular edge is a
segment of a main gradient direction that effectively matches to
a contour of the image. The weight WH of the split hypoth-
esis H that provides the two regions R1 and R2 is given by
WH = f(R1) + f(R2), where the function f returns the pix-
els number of regular edges in a region. We select the hypothesis
H∗ = arg maxH WH .

If we try for instance to split image at x0 location, we reaccumu-
late y-gradients in left region and in right region separately. Local
extrema are detected in each of those y-profiles (cf figure 5).

Previous vertical split hypotheses and those new horizontal split
hypotheses constitute two new grid patterns for local split hy-
potheses. Each edge of these grid patterns is either regular or

Figure 5: y-gradient profiles are separately accumulated in left
region (yellow profile) and in right region (red profile).

fictive. Regular edges are located on significant gradient where a
significant gradient keeps its orientation uniform. A fictive edge
does not match with any significant gradient. Such a distinction
is illustrated in figure 6.

Regular edge

Fictive edge

Figure 6: Regular edges are located on significant gradient where
a significant gradient keeps its orientation uniform. A fictive edge
doesn’t match with any significant gradient.

The weight of each split hypothesis is the sum of regular edge
lengths. Figure 7 illustrates best split selection.

Figure 7: Regular edges are drawn in red. Split hypotheses are
drawn in yellow. Right image presents the best split hypothesis
whose weight is 8400 regular edge pixels. Left image presents a
bad split hypothesis: only 7700 regular edge pixels.

If the given region does not contain any gradient extremum, the
process stops. Figure 3 shows a region that do not fit with any
model and that is not split.

6 RESULTS

We illustrate our segmentation on a typical instance of our is-
sue: two building façades in the background. We have set maxi-
mum model deviation at 15% of each region area. On our images,
the depth in the hierarchy of the segmentation tree is represented
by the thickness of split lines. First the process detects vertical
structure discontinuities (figure 8). The two façades are sepa-
rated. Then on each of these two new sub-images, background
is separated from the foreground (figure 9). At this step we have
obtained four images: two façade images and two images of fore-
ground cars. Then the process recursively keeps analyzing these
images as shown in figure 10. Figure 11 shows the global seg-
mentation: a tree of about 2000 elementary models.
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Figure 8: The two façades are separated because of the significa-
tive break between their radiometric structure.

Figure 9: Background is separated from the foreground on each
of the two façade images.

Figure 10: The process recursively segments each of the four sub-
images. It splits the two façades and the foreground cars.

Figure 11: The segmentation result is a tree of 2000 elementary
models.
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The strength of this process is its ability to localize accurate
global structure breaks: it separates façades and foreground. On
the one hand, split results at the foreground are not really inter-
esting because the related region is not in the rectified plane: they
are based on chaotic gradient distribution. In such a case, the
process stops or it oversegments. This phenomenon typically oc-
curs on the cars of figure 11. On the other hand, splits inside
façade texture provides some significative information. On fig-
ure 10, the left façade is first split between the second and the
third floor, whereas the first windows column is extracted from
the right façade. This different strategy certainly must be ex-
plained by the fact that the process is exclusively based on edges
alignment. An other criterion like contour uniformity may direct
the split decision toward a more significant separation: favoring
floor separation rather than window columns.

Figure 3 shows the region models, the leaves of the segmentation
tree. One can see that the synthetic image reconstructed from the
2D-models is very close to the initial image although the rep-
resentation is very compact. This shows that our modelling is
particularly well adapted for image compression.

Figure 12: Upper: Rectified façade image. Bottom: Synthetic
image reconstructed from 1000 elementary 2D-models.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new unsupervised model-based
segmentation approach that provides interesting result. It is able
to separate a façade from its surroundings but also to organize
façade itself in a hierarchy. Still these are first results, thus there
are many improvements that could be made. The dictionary of

models is currently being extended to periodic textures to man-
age for instance balconies, building floors or brick texture. Some
other objects or specializations of objects could be added such
as symmetry computation of (Van Gool et al., 2007). A merger
process at each step of the process could also be useful to correct
oversegmentations. Besides we could add color information to
directly detect difference between two façades ore between two
floors in certain cases. We could also use a point cloud to com-
pute an ortho image: displacements due to perspective effects
would be avoided.

Such an unsupervised segmentation will provide of course rele-
vant clues to classify the façade architectural style or to detect
objects backward or in front of it. It is also intended to give geo-
metrical information that represents relevant indexation features
e.g. windows gab length or floor delineation.
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ABSTRACT: 
 
The paper describes an approach for the quality dependent reconstruction of building facades using 3D point clouds from mobile 
terrestrial laser scanning and coarse building models. Due to changing viewing conditions such measurements frequently suffer from 
different point densities at the respective building facades. In order to support the automatic generation of facade structure in regions 
where no or only limited LiDAR measurements are available, a quality dependent processing is implemented. For this purpose, 
facades are reconstructed at areas of sufficient LiDAR point densities in a first processing step. Based on this reconstruction, rules 
are derived automatically, which together with the respective facade elements constitute a so-called facade grammar. This grammar 
holds all the information that is necessary to reconstruct facades in the style of the given building. Thus, it can be used as knowledge 
base in order to improve and complete facade reconstructions at areas of limited sensor data. Even for parts where no LiDAR 
measurements are available at all synthetic facade structures can be hypothesized providing detailed building geometry. 
 
 

1. INTRODUCTION 

Due to the growing need for visualization and modelling of 3D 
urban landscapes numerous tools for the area covering 
production of virtual city models were made available, which 
are usually based on 3D measurements from airborne stereo 
imagery or LiDAR. This airborne data collection, which mainly 
provides the outline and roof shape of buildings, is frequently 
complemented by terrestrial laser scanning (TLS). However, the 
applicability of standard TLS is usually limited to the 3D data 
capturing of smaller scenes from a limited number of static 
viewpoints. In contrast, the application of dynamic TLS from 
moving platforms allows the complete coverage of spatially 
complex urban environments from multiple viewpoints. One 
example of such a mobile mapping system, which combines 
terrestrial laser scanners with suitable sensors for direct 
georeferencing, is the StreetMapper system (Kremer and 
Hunter, 2007). This system enables the rapid and area covering 
measurement of dense 3D point clouds by integrating four 2D 
laser scanners with a high performance GNSS/inertial 
navigation system. By these means accuracy levels better than 
30mm have been demonstrated for point measurement in urban 
areas (Haala et al., 2008).  
 
In general, such systems allow for an efficient measurement of 
larger street sections including the facades of the neighbouring 
buildings. However, depending on the look angle during the 
scanning process, strong variations of the available point 
densities at the building facades can occur. Such viewpoint 
limitations and occlusions will subject the collected point cloud 
to significant changes of accuracy, coverage and amount of 
detail. For this reason, the following interpretation of the 
measured point clouds will be hampered by considerable 
changes in data quality. Thus, algorithms for automatic facade 
reconstruction have to be robust against potentially incomplete 
data sets of heterogeneous quality. For this purpose, dense point 
cloud measurements for facades with good visibility are used in 
our approach to extract rules on dominant or repetitive features 
as well as regularities. These rules then are used as knowledge 

base to generate facade structure for parts or buildings where no 
sensor data is available. By these means bottom-up and top-
down propagation of knowledge can be combined in order to 
profit from both reconstruction techniques. The production 
rules, which are automatically inferred from well observed and 
modelled facades, are represented by a formal grammar.  
 
Such formal grammars are frequently used within knowledge 
based object reconstruction to ensure the plausibility and the 
topological correctness of the reconstructed object elements. 
Lindenmayer-systems (L-systems), which can be applied to 
model the growth processes of plants, are well known examples 
of formal grammars (Prusinkiewicz and Lindenmayer, 1990). 
So-called split grammars are introduced by Wonka et al. (2003) 
to automatically generate architectural structures from a 
database of rules and attributes. Similarly, Müller et al. (2006) 
present a procedural modelling approach for the generation of 
detailed building architecture in a predefined style. However, 
the variety of facade structures which can be generated is 
restricted to the knowledge base inherent in the grammar rules 
or model libraries. Thus, the appearance of facade elements is 
limited to prespecified types, even when leaving some freedom 
in the values of their parameters. Another problem while 
applying such approaches for object reconstruction is that 
manual interaction is required to constitute suitable building 
styles and translate them into some kind of model or grammar 
description. For this reason, several approaches aim at deriving 
such kind of knowledge from observed or given data. For 
example, Ripperda (2008) derives prior facade information 
from a set of facade images in order to support the stochastic 
modelling process. However, existing methods which try to 
derive procedural rules from given images as proposed by 
Müller et al. (2007) or Van Gool et al. (2007) still resort to 
semi-automatic methods. The same holds true for the work of 
Aliaga et al. (2007). They present an interactive system for both 
the creation of new buildings in the style of others and the 
modification of existing buildings. At first, the user manually 
subdivides a building into its basic external features. This 
segmentation is then employed to automatically infer a grammar 
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which captures the repetitive patterns and particularities of the 
building. Finally, new buildings can be generated in the 
architectural style defined by the derived grammar. Even though 
this approach provides individually representative grammars 
instead of predefined ones, the crucial part of the inference 
process, the facade interpretation, has to be done manually. In 
contrast we pursue an approach which runs fully automatically 
during all processing steps.  
 
The automatic generation of a facade grammar, which is derived 
from 3D point cloud measurements of a mobile mapping 
system, are discussed in section 2. As demonstrated in section 3 
top-down predictions can be activated and used for the 
improvement and completion of the reconstruction result that 
has already been derived from the observed measurements 
during the bottom-up modelling. Moreover, the facade grammar 
can be applied to synthesize facades for which no sensor data is 
available. The discussion of 3D reconstruction results 
demonstrated in section 4 will conclude the paper.  
 
 

2. GENERATION OF FACADE GRAMMAR 

The automatic generation of a facade grammar based on 
terrestrial LiDAR data is the core of our facade modelling 
approach. The first step is a data driven reconstruction process 
aiming at the detection of geometric facade structures in the 
observed point clouds. In this regard, a facade defines a planar 
polygon with holes. Such holes indicate either windows, which 
will be modelled as indentations, or salient structures such as 
balconies, oriels or windowsills, which will be attached in the 
form of protrusions. The result of the data driven facade 
reconstruction serves as knowledge base for the generation of 
facade geometries where no sensor data is available. This 
knowledge, which includes information on dominant or 
repetitive structures as well as their interrelationships, can be 
inferred fully automatically and stored as a facade grammar. 
While data collection will be described as a pre-processing step 
in section 2.1, the basic concepts of the data driven 
reconstruction and the subsequent grammar inference will be 
addressed in section 2.2 and 2.3, respectively.  

2.1 Data Collection 

The StreetMapper mobile laser scanning system which was 
used for our experiments collects 3D point clouds at a full 360° 
field of view by operating four 2D-laser scanners 
simultaneously. The required direct georeferencing during 3D 
point cloud collection is realized by the integration of 
observations from GPS and Inertial Measurement Units (IMU). 
Figure 1 shows a 3D visualisation of the measured trajectory 
overlaid to the 3D city model which was also used for the 
following tests. This 3D city model is maintained by the City 
Surveying Office of Stuttgart. The roof geometry of the 
respective buildings was modelled based on photogrammetric 
stereo measurement while the walls trace back to given building 
footprints. The trajectory was captured during our tests within 
an area in the city centre of Stuttgart at a size of 1.5 km x 2km. 
The respective point clouds were measured at a point spacing of 
approximately 4cm. Figure 2 depicts a part of the StreetMapper 
point cloud at the historic Schillerplatz in the pedestrian area of 
Stuttgart. The observed points are overlaid to the corresponding 
3D building models in order to show the quality and amount of 
detail of the available data. Another measured point cloud 
overlaid to an existing coarse building model is shown in 

Figure 3. This example is used in the following to illustrate our 
bottom-up process for facade reconstruction. Within this 
process, the geometric information inherent in the available 
point cloud is exemplarily extracted for the facade marked by 
the white polygon. 
 

 
Figure 1. 3D city model with overlaid trajectory from mobile 

TLS 
 

 
Figure 2. Point cloud from mobile TLS aligned with virtual city 

model  
 

 
Figure 3. Lindenmuseum, Stuttgart: point cloud from TLS 

aligned with existing coarse building model  
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2.2 Data Driven Reconstruction 

Frequently, the representation of buildings is based on 
constructive solid geometry (CSG) or boundary representation 
(B-Rep). In contrast, we apply a representation of the buildings 
by cell decomposition (Haala et al., 2006). By these means, 
problems which can occur during the generation of 
topologically correct boundary representations can be avoided. 
Additionally, the implementation of geometric constraints such 
as meeting surfaces, parallelism and rectangularity is simplified. 
Due to the applied representation scheme, the idea of our 
reconstruction algorithm is to segment an existing coarse 3D 
building object with a flat front face into 3D cells. Each 3D cell 
represents either a homogeneous part of the facade or a window 
area. Therefore, they have to be differentiated depending on the 
availability of measured LiDAR points. After this classification 
step, window cells are eliminated while the remaining facade 
cells are glued together to generate the refined 3D building 
model. These steps are depicted exemplarily within Figure 4 
and Figure 5, and will be explained in the following sections. 
The processing is based on the facade and point cloud marked 
by the white polygon in Figure 3. 
 

 
Figure 4. Lindenmuseum, Stuttgart: LiDAR point cloud (left), 

and detected edge points and window lines (right)  
 

 
Figure 5. Lindenmuseum, Stuttgart: classified 3D cells (left), 

3D facade model (middle), and refined 3D facade 
model (right) 

 
2.2.1 Point Cloud Segmentation 
At glass LiDAR pulses are either reflected or the glass is 
penetrated. Thus, as it can be seen in Figure 4(left), by laser 
scanning usually no points are measured in the facade plane at 
window areas. If only the points are considered that lie on or in 
front of the facade, the windows will describe areas with no 
point measurements. These no-data areas can be used for the 
point cloud segmentation which aims at the detection of 
window edges. For example, the edge points of a left window 
border are detected if no neighbour measurements to their right 
side can be found in a predefined search radius. In a next step, 
horizontal and vertical lines are estimated from non-isolated 

edge points. Figure 4(right) shows the extracted edge points at 
the window borders as well as the derived horizontal and 
vertical lines. Based on these window lines, planar delimiters 
can be generated for a subsequent spatial partitioning. Each 
boundary line defines a partition plane which is perpendicular 
to the facade. For the determination of the window depth, an 
additional partition plane can be estimated from the LiDAR 
points measured at the window crossbars. These points are 
detected by searching a plane parallel to the facade, which is 
shifted in its normal direction. The set of partition planes 
provides the structural information for the cell decomposition 
process. It is used to intersect the existing building model 
producing a set of small non-overlapping 3D cells. 
 
2.2.2 Classification and Reconstruction 
In order to classify the 3D cells into facade and window cells, a 
point-availability-map is generated. It is a binary image with 
low resolution where each pixel defines a grid element on the 
facade. The optimal grid size is a value a little higher than the 
point sampling distance on the facade. Grid elements on the 
facade where LiDAR points are available produce black pixels 
(facade pixels), while white pixels (non-facade pixels) refer to 
no-data areas. The classification is implemented by computing 
the ratio of facade to non-facade pixels for each 3D cell. Cells 
including more than 70% facade pixels are defined as facade 
solids, whereas 3D cells with less than 10% facade pixels are 
assumed to be window solids. While most of the 3D cells can 
be classified reliably, the result is uncertain especially at 
window borders or in areas with little point coverage. However, 
the integration of neighbourhood relationships and constraints 
concerning the simplicity of the resulting window objects 
allows for a final classification of such uncertain cells. Figure 
5(left) shows the classified 3D cells: facade cells (grey) and 
window cells (white). 
 
Within a subsequent modelling process, the window cells are 
cut out from the existing coarse building model. Thus, windows 
and doors appear as indentations in the building facade which is 
depicted in Figure 5(middle). Moreover, the reconstruction 
approach is not limited to indentations. Details can also be 
added as protrusions to the facade (Becker and Haala, 2007). 
However, the achievable level of detail for 3D objects that are 
derived from terrestrial laser scanning depends on the point 
sampling distance. Small structures are either difficult to detect 
or even not represented in the data. Nevertheless, by integrating 
image data with a high resolution in the reconstruction process 
the amount of detail can be increased (Becker and Haala, 2007). 
This is exemplarily shown for the reconstruction of window 
crossbars in Figure 5(right).  

2.3 Automatic Inference of Facade Grammar 

As it is already visible in Figure 3, the given scan configuration 
resulted in considerable variations of the available point 
coverage for the respective building. Thus, the bottom-up 
facade reconstruction presented in the previous section was 
realized for a facade, which is relatively well observed. This 
overall result is now used to infer the facade grammar. 
Frequently, such formal grammars are applied during object 
reconstruction to ensure the plausibility and the topological 
correctness of the reconstructed elements (Müller et al., 2006). 
In our application, a formal grammar will be used for the 
generation of facade structure where only partially or no sensor 
data is available.  
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In principle, formal grammars provide a vocabulary and a set of 
production or replacement rules. The vocabulary comprises 
symbols of various types. The symbols are called non-terminals 
if they can be replaced by other symbols, and terminals 
otherwise. The non-terminal symbol which defines the starting 
point for all replacements is the axiom. The grammar’s 
properties mainly depend on the definition of its production 
rules. They can be, for example, deterministic or stochastic, 
parametric and context-sensitive. A common notation for 
productions which we will refer to in the following sections is 
given by  
 

: : :id lc pred rc cond succ prob< > →  
 
The production identified by the label id specifies the 
substitution of the predecessor pred for the successor succ. 
Since the predecessor considers its left and right context, lc and 
rc, the rule gets context-sensitive. If the condition cond 
evaluates to true, the replacement is carried out with the 
probability prob. Based on these definitions and notations, we 
develop a facade grammar Γfacade(N,T,P,ω) which allows us to 
synthesize new facades of various extents and shapes. The 
axiom ω refers to the new facade to be modelled and, thus, 
holds information on the facade polygon. The sets of terminals 
and non-terminals, T and N, as well as the production rules P 
are automatically inferred from the reconstructed facade as 
obtained by the data driven reconstruction process (section 2.2). 
 
2.3.1 Searching for Terminals  
In order to yield a meaningful set of terminals for the facade 
grammar, the building facade is broken down into some set of 
elementary parts, which are regarded as indivisible and 
therefore serve as terminals. For this purpose, a spatial 
partitioning process is applied which segments the facade into 
floors and each floor into tiles. Tiles are created by splitting the 
floors along the vertical delimiters of geometries. A geometry 
describes a basic object on the facade that has been generated 
during the data driven reconstruction process (section 2.2). It 
represents either an indentation like a window or a protrusion 
like a balcony or an oriel. Two main types of tiles can be 
distinguished: wall tiles, which represent blank wall elements, 
and geometry tiles, which include structures like windows and 
doors. All these tiles are used as terminals within our facade 
grammar. In the remaining sections of the paper, wall tiles will 
be denoted by the symbols W for non-terminals and wi for 
terminals. Geometry tiles will be referred to as G and gi in case 
of non-terminals and terminals, respectively.  
 
2.3.2 Interrelationship between Terminals  
Having distinguished elementary parts of the facade we now 
aim at giving further structure to the perceived basic tiles by 
grouping them into higher-order structures. This is done fully 
automatically by identifying hierarchical structures in sequences 
of discrete symbols. The structural inference reveals 
hierarchical interrelationships between the symbols in terms of 
rewrite rules. These rules identify phrases that occur more than 
once in the string. Thus, redundancy due to repetition can be 
detected and eliminated. For more information on this process 
please refer to Becker et al. (2008). As an example, Figure 6a 
shows a modelled floor. While Figure 6b depicts the 
corresponding tile string in its original version, the compressed 
string and the extracted structures are given in Figure 6c. The 
hierarchical relations between the facade elements can be stored 
in a parse tree illustrated in Figure 6d. 
 

a)  
 

 
b)  floor 1 → w1 g1 w3 g1 w1 g1 w3 g1 w1 g1 w3 g1 w1 g1 w3 g1 … 
   w2 g1 w3 g1 w2 g1 w3 g1 w1 g1 w3 g1 w1 g1 w3 g1 w1 g1 w3 g1 w1 
 

c)  floor 1 → w1 S3 w2 S1 w2 S3 w1 
  

            S1 → g1 w3 g1 
            S2 → S1 w1 S1 
            S3 → S2 w1 S2  
 

d) 

 
Figure 6. Modelled floor (a), corresponding tile string (b), 

compressed tile string and extracted structures (c), 
parse tree (d) 

 
2.3.3 Inference of Production Rules 
Based on the sets of terminals T={w1, w2, … , g1, g2, …} and 
non-terminals N={W, G, … , S1, S2, …}, which have been set up 
previously, the production rules for our facade grammar can be 
inferred. Following types of production rules are obtained 
during the inference process: 
 
p1: F → W+ 
p2: W : cond → W G W  
p3: G : cond → Si : P(x|p3) 
p4: G : cond → gi : P(x|p4) 
p5: lc < W > rc : cond → wi : P(x|p5) 
 
The production rules p1 and p2 stem from the spatial 
partitioning of the facade. p1 corresponds to the horizontal 
segmentation of the facade into a set of floors. The vertical 
partitioning into tiles is reflected in rule p2. A wall tile, which in 
the first instance can stand for a whole floor, is replaced by the 
sequence wall tile, geometry tile, wall tile. Each detected 
structure gives rise to a particular production rule in the form of 
p3. This rule type states the substitution of a geometry tile for a 
structure Si. In addition, all terminal symbols generate 
production rules denoted by p4 and p5 in the case of geometry 
terminals gi and wall terminals wi, respectively. A more detailed 
description of all rule types pi and the probabilities P(x|pi) 
assigned to them can be found in Becker et al. (2008). 
 

3. APPLICATION OF FACADE GRAMMAR 

Our facade grammar derived in the previous section implies 
information on the architectural configuration of the observed 
facade concerning its basic facade elements and their 
interrelationships. Based on this knowledge facade hypotheses 
can be generated as described in section 3.1. Section 3.2 
presents different application scenarios. Facades and building 
parts which are covered by noisy or incomplete sensor data are 
usually subject to inaccurate and false reconstructions which are 
due to problems of the data driven reconstruction process. For 
such regions possible facade geometry can be proposed in order 
to improve and complete facade structures. Furthermore, the 
production process can also be used to synthesize totally 
unobserved building objects. 
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3.1 Production of Facade Hypothesis  

The production process starts with an arbitrary facade, called 
the axiom, and proceeds as follows: (1) Select a non-terminal in 
the current string, (2) choose a production rule with this non-
terminal as predecessor, (3) replace the non-terminal with the 
rule’s successor, (4) terminate the production process if all non-
terminals are substituted, otherwise continue with step (1). The 
geometrical result of the production process depends on the 
order in which the non-terminals are selected. Usually, best 
results are obtained when facade structures which are likely to 
appear in the middle of the facade are placed first, and the 
remaining spaces to the left and the right side are filled 
afterwards. As it is illustrated in Figure 7, the non-terminal 
selection refers to this principle. For clearness, we here assume 
a facade with only one floor. In each step, the non-terminal 
selected for the next substitution is marked in red. 
 

 
Figure 7. Non-terminal selection 

 
As long as the facade string consists of only one symbol, the 
non-terminal selection is trivial. In the third line, substitution 
starts with the non-terminal G in the middle of the string. Ac-
cording to this replacement, the chosen geometry tile gi will be 
placed about in the middle of the facade floor. The following 
replacements are taken from the left to the right of the string. 
When there is only one non-terminal left on the right end of the 
string (see the last line in Figure 7), the left part of the facade 
floor is completely filled with a sequence of wall and geometry 
tiles. At this stage, symmetry can be enforced by substituting 
the remaining non-terminal W by a mirrored version of the left 
terminal string. If no symmetry is required, the replacement can 
be continued as described before. During the production, non-
terminals are successively rewritten by the application of 
appropriate production rules. When more than one production 
rule is possible for the replacement of the current non-terminal, 
the rule with the highest probability value is chosen. As soon as 
the facade string contains only terminals, the production is 
completed and the string can be transferred into a 3D 
representation. 

3.2 Application Scenarios  

Within the production process, the grammar is applied to 
generate hypotheses about possible positions of each geometry 
tile and thereby synthesize facade geometry for given coarse 
building models. This process can for example be used to 
generate facade structure at areas, where sensor data is only 
available at limited quality. Such a scenario is depicted 
exemplarily in Figure 8, which shows a StreetMapper point 
cloud for an exemplary facade acquired during two epochs. The 
colours encode the different scanners mounted on the 
StreetMapper. Points that stem from the upward facing laser 
scanner are marked in yellow; points that are measured by the 

side facing scanners are blue (right scanner) and red (left 
scanner). 
 

 
Figure 8. Measured facade points and determined convex 

‘dense area’ (blue rectangle) 
 
As it is visible in Figure 8, the point sampling distance varies 
strongly due to occlusions and oblique scanning views to the 
upper part of the building. For this reason, facades may contain 
areas where no or only little sensor data is available. In such 
regions, an accurate extraction of windows and doors cannot be 
guaranteed anymore. Nevertheless, a grammar based facade 
completion allows for meaningful reconstructions even in those 
areas. The main idea is to derive the facade grammar solely 
from facade parts for which dense sensor data and thus accurate 
window and door reconstructions are available. The detection 
of such ‘dense areas’ is based on a heuristic approach 
evaluating the sampling distances of the points lying on the 
facade surface. In Figure 8 the extracted convex dense area is 
marked by a blue rectangle. Since the inference process is 
restricted to this dense area, a facade grammar of good quality 
can be provided, which is then used to synthesize the remaining 
facade regions during the production step.  

 
 Figure 9. Facade reconstruction for the “Lindenmuseum”  
 

 
Figure 10. Facade geometry synthesized from grammar library 
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As an example, this process is depicted in Figure 9 for 
Stuttgart’s Lindenmuseum which has already been illustrated in 
Figure 3. There, the original coarse model is shown in 
combination with the overlaid 3D point cloud whereas Figure 9 
demonstrates the reconstructed facade geometry. The blue 
shaded region corresponds to the white polygon in Figure 3 and 
indicates the facade geometry that has been generated during 
the data driven reconstruction process. All remaining building 
parts are modelled based on the grammar inferred from the 
marked region. 
 
While in that example the grammar is applied for the 
completion of facade structure, it can also be used as a “library” 
to generate building facades for objects, where no measurement 
is available at all. This step is demonstrated in Figure 10 where 
facade geometry was synthesized for a number of residential 
houses. Since these building were not covered by any sensor 
data at all, a range of grammars was derived in advance from a 
few buildings in the near environment. Similarly, the 
applicability of our facade grammars to a larger scene using 
grammars which represent compatible architectural styles is 
shown in Figure 11. 
 

4. DISCUSSION 

Within the paper an automatic approach for the geometric 
modelling of 3D building facades was proposed. Based on 
observed 3D point clouds from a mobile mapping system, 
grammar rules are extracted, which can then be used to generate 
synthetic facade structures for unobserved building parts. 
Despite the good geometric accuracy which is feasible for 
terrestrial point clouds such data frequently suffer from the 
unavailability of measurements for hidden building parts. This 
problem is solved by extracting the grammar from observed 
street-facing facades and then applying it for the improvement 
and completion of remaining facade structure in the style of the 
respective building. Moreover, knowledge propagation is not 
restricted to facades of one single building. Based on a small set 
of facade grammars derived from just a few observed buildings, 
facade reconstruction is also possible for whole districts 
featuring uniform architectural styles. Due to these reasons the 
proposed algorithm is very flexible towards different data 
quality and incomplete sensor data. 
 

5. REFERENCES 

Aliaga, D., Rosen, P., Bekins, D., 2007. Style Grammars for 
Interactive Visualization of Architecture. IEEE TVCG 13 (4). 

Becker, S., Haala, N., 2007. Refinement of Building Facades by 
Integrated Processing of LIDAR and Image Data. IAPRS & SIS 
Vol. 36 (3/W49A), pp. 7-12. 

Becker, S., Haala, N., Fritsch, D., 2008. Combined Knowledge 
Propagation for Facade Reconstruction. IAPRS & SIS Vol. 37 
(B5), pp. 1682-1750. 

Haala, N., Becker, S., Kada, M., 2006. Cell Decomposition for 
the Generation of Building Models at Multiple Scales. IAPRS 
Vol. 36 (3), pp. 19-24. 

Haala, N., Peter, M., Kremer, J., Hunter, G., 2008. Mobile 
LiDAR Mapping for 3D Point Cloud Collection in Urban Areas 
- a Performance Test. IAPRS, Vol. 37, (B5), pp. 1119f. 

Kremer, J., Hunter, G., 2007. Performance of the StreetMapper 
Mobile LIDAR Mapping System in “Real World” Projects. 
Photogrammetric Week '07, pp. 215-225. 

Müller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L., 
2006. Procedural Modeling of Buildings. ACM Transactions on 
Graphics (TOG) 25 (3), pp 614-623. 

Müller, P., Zeng, G., Wonka, P., Van Gool, L., 2007. Image-
based Procedural Modeling of Facades. ACM Transactions on 
Graphics (TOG) 26 (3), article 85, 9 pages. 

Prusinkiewicz, P., Lindenmayer, A., 1990. The algorithmic 
beauty of plants. New York, NY: Springer. 

Ripperda, N., 2008. Determination of Facade Attributes for 
Facade Reconstruction. IAPRS & SIS Vol. 37 (B3a), 6 pages. 

Van Gool, L., Zeng, G., Van den Borre, F., Müller, P., 2007. 
Towards mass-produced building models. IAPRS & SIS, Vol. 
36 (3/W49A), pp. 209–220. 

Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W., 2003. 
Instant architecture. ACM TOG 22 (3), pp. 669–677. 

 
Figure 11. Facade geometry for larger area 

234

       CMRT09: Object Extraction for 3D City Models, Road Databases and Traffic Monitoring - Concepts, Algorithms, and Evaluation 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯



Author Index 
 
 
 

Abelen, S .. …………………. 163 Frontoni, E……………………….... 13

Arens, M …... ………………. 187 Gerke, M……….…………………. 77

Arlicot, A ... ……………….... 205 Goossens, R…..………………….. 89

Auer, S.... …………………… 157 Grote, A…….. ………………….... 27

Baillard, C ………………….. 97 Haala, N.….....………………….... 229

Baltsavias, E. ………………. 71 Hammoudi, K….…………………. 65

Bamler, R….. ……………….. 157 Hebel, M ……..... ………………… 187

Barinova, O... ……………….. 1 Hinz, S.…………. ….. 35,157,163,181

Becker, S….. ……..………... 229 Hyyppä, J.…….... ………………… 145

Bénitez, S.. …………….…... 97 Läbe, T.………… ………………… 211

Boldo, D. …………………..... 139 Lenhart, D….. ………………….… 181

Burochin,J-P……………….... 223 Liang, X.. …………………………. 145

Butenuth, M. ………………… 103 Lo, C-Y........... ………………….... 7

Buyuksalih,G... ………………. 89 Kada, M……….... …………….….. 47

Champion, N. ………………. 145 Karantzalos, K.… ………………... 127

Chen, C-T… ………………….. 7 Konushin, A. …………………..…. 1

Chen, J-X. ……………………  7 Kozempel, K…… ………………... 175

Chen, L-C. …………………… 7 Marcotegui, B …. ………………… 199

Cord, M…. …………….. 193,199 Matikainen, L…... ………………… 145

Demir, N…… ……………….. 71 McKinley, L ...….. ………………… 47

Derauw, D… ……………….. 121 Mooney, K .…….. ………………... 53

Dornaika, .F.. ………………. 65 Mumtaz, S. A. ……………………. 53

Drauschke,.M ……………… 211 Olsen, B.P…....…………………... 145

Ebert, J….… …………….…. 115 Paparoditis, N………….. …65,205,223

Fabrizio, J…. …………..…... 199 Paragios, N ……………. ………… 127

Falkowski, K. ……………….. 115 Pfeiffer, D ………………. ………… 41

Förstner. W.. ……………….. 211 Picard, D ……………….. ………… 193

Fraser, C.S... …………….….  19 Pierrot-Deseilligny, M.… ………… 139

Frey, D……………………..... 103 Poli, D…………………… ………… 71



Pu, S ………...… …………... 217 Thiele, A……. ……………………. 169

Ravanbakhsh, M .………….. 19 Tournaire, O...……………………. 223

Reulke,R… …………….. 41, 175 Valle, E…………. ………………... 193

Roscher, R …………………. 211 Vallet,B… …………………………. 139

Roth, A……….. ………........ 151 Velizhev, A……… ………………... 1

Rottensteiner, F… ……... 27,145 Vosselman, G ……………………. 217

Saeedi, S.……....... ….......... 133 Vozikis, G…………. …………….... 83

Samadzadegan, F… …... 59,133 Wang, F…..……………………….. 109

Schmitt, A…….. ……….….... 151 Wegner, J.D………..... …….…….. 169

Shapovalov, R.. ……………. 1 Wen, J…………... ………………... 109

El-Sheimy, N... ……………... 133 Wessel, B…. ……………….......... 151

Soergel, U….. …………..…. 169 Wu, Y…. ………………………….. 109

Soheilian, B... …………….... 205 Yao, W…………… ……………….. 35

Stilla, U….. …………….... 35,187 Zhu, X…………………. ………….. 157

Sudakov, S. ………………… 1 Zingaretti, P……… …………............. 13

Tack, F……. ………………… 89 

   

     
 


	Cover
	Publish Information 
	Workshop Committees 
	Preface 
	Contents 
	Pub
	Barinova_et_al
	Lo_et_al
	Mancini_et_al
	Ravanbakhsh_Fraser
	Grote_Rottensteiner
	Yao_et_al
	Pfeiffer_Reulke
	Kada_McKinley
	Mumtaz_Mooney
	Ramzi_Samadzadegan
	Hammoudi_et_al
	Demir_et_al
	1. INTRODUCTION
	2. PREVIOUS WORK 
	3. INPUT DATA AND PREPROCESSING
	4. BUILDING DETECTION
	4.1 DSM/DTM and NDVI (Method 1)
	4.2 Supervised classification and use of nDSM (Method 2)
	4.3 Building detection using density of raw Lidar DTM and NDVI (Method 3)
	4.4 Building and tree detection from Lidar data (Method 4)

	5. ANALYSIS OF RESULTS
	6. CONCLUSIONS
	REFERENCES 

	Gerke
	Vozikis
	Tack_et_al
	Bénitez_Baillard
	Frey_Butenuth
	Wen_et_al
	1. INTRODUCTION 
	2. RELATED WORKS 
	2.1 3D Rendering techniques 
	2.2 Data Model 
	3. OFFLINE DATA PREPARATIONS 
	4. 3D SCENES RENDERING 
	5. CLIENT-SERVER ARCHITECTURE FOR 3D NAVIGATION 
	6. EXPERMENT AND CONCLUSIONS 
	6.1 Experiment and results 
	6.2 Conclusions 
	6.3 Future work 

	7. REFERENCES 


	Falkowski_Ebert
	INTRODUCTION
	State of the art

	BASIC TECHNOLOGIES
	TGraph technology
	Lightweight component model

	THE INTEGRATED MODEL SCHEMA
	Geometry/topology schema part
	Semantics schema part
	Appearance schema part

	INTEGRATED MODEL PROCESSING
	Example
	Model creation.
	Model improvement
	Model transformation
	Model export
	Model analysis

	CONCLUSIONS AND FUTURE WORK

	Derauw
	Karantzalos_Paragios
	Saeedi_et_al
	Vallet_et_al
	Champion_et_al
	Schmitt_et_al
	Auer_et_al
	1. INTRODUCTION
	2. SIMULATION CONCEPT
	2.1 Modeling of scene objects
	2.2 Sampling of the 3D model scene
	2.3 Reflectivity maps in azimuth and slant range
	2.4 3D analysis of scattering effects

	3. COMPARISON: SIMULATION VS. REAL DATA
	3.1  Object modelling
	3.2 Simulation vs. real data

	4. SUMMARY AND OUTLOOK
	5. REFERENCES

	Hinz_Abelen
	Wegner_et_al
	Kozempel_Reulke
	Lenhart_Hinz
	Hebel_et_al
	Introduction
	Problem description
	Overview
	Related work

	Experimental setup
	Sensor carrier
	Laser Scanner
	Navigational sensor system

	Used methods and data processing
	Automatic generation of an adequate database
	Scan line analysis of airborne LiDAR data
	Grouping of line segments
	Feature extraction
	Registration of ALS and model data

	Experiments
	conclusion and future work
	References

	Picard_et_al
	Fabrizio_et_al
	Arlicot_et_al
	Drauschke_et_al
	Pu_Vosselman
	Burochin_et_al
	Introduction
	Context
	Related work
	Single pattern detection
	1D or 2D grid structures detection
	Façade grammars


	Our model based segmentation strategy
	Rectification process
	Extracting Vanishing Points
	Multi-planar Rectification Process

	Model matching
	Planar Model
	Generalized Cylinder Model

	Split process by energy maximization
	Generating splitting hypotheses
	Choosing the best splitting hypotheses

	Results
	Conclusions and future work

	Becker_Haala

	Author Index 


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




